Logo Search packages:      
Sourcecode: kfreebsd-6 version File versions  Download package

ata-raid.c

/*-
 * Copyright (c) 2000 - 2006 Søren Schmidt <sos@FreeBSD.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer,
 *    without modification, immediately at the beginning of the file.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: src/sys/dev/ata/ata-raid.c,v 1.98.2.10 2007/08/24 18:43:00 jhb Exp $");

#include "opt_ata.h"
#include <sys/param.h>
#include <sys/systm.h> 
#include <sys/ata.h> 
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/endian.h>
#include <sys/bio.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <sys/cons.h>
#include <sys/sema.h>
#include <sys/taskqueue.h>
#include <vm/uma.h>
#include <machine/bus.h>
#include <sys/rman.h>
#include <dev/pci/pcivar.h>
#include <geom/geom_disk.h>
#include <dev/ata/ata-all.h>
#include <dev/ata/ata-disk.h>
#include <dev/ata/ata-raid.h>
#include <dev/ata/ata-pci.h>
#include <ata_if.h>

/* prototypes */
static void ata_raid_done(struct ata_request *request);
static void ata_raid_config_changed(struct ar_softc *rdp, int writeback);
static int ata_raid_status_old(struct ata_ioc_raid_config *config);
static int ata_raid_status(struct ata_ioc_raid_status *status);
static int ata_raid_create(struct ata_ioc_raid_config *config);
static int ata_raid_delete(int array);
static int ata_raid_addspare(struct ata_ioc_raid_config *config);
static int ata_raid_rebuild(int array);
static int ata_raid_read_metadata(device_t subdisk);
static int ata_raid_write_metadata(struct ar_softc *rdp);
static int ata_raid_wipe_metadata(struct ar_softc *rdp);
static int ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp);
static int ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp);
static int ata_raid_hptv2_write_meta(struct ar_softc *rdp);
static int ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp);
static int ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp);
static int ata_raid_intel_write_meta(struct ar_softc *rdp);
static int ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp);
static int ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp);
static int ata_raid_jmicron_write_meta(struct ar_softc *rdp);
static int ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp);
static int ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp);
static int ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp);
static int ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native);
static int ata_raid_promise_write_meta(struct ar_softc *rdp);
static int ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp);
static int ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp);
static int ata_raid_sis_write_meta(struct ar_softc *rdp);
static int ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp);
static int ata_raid_via_write_meta(struct ar_softc *rdp);
static struct ata_request *ata_raid_init_request(struct ar_softc *rdp, struct bio *bio);
static int ata_raid_send_request(struct ata_request *request);
static int ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags);
static char * ata_raid_format(struct ar_softc *rdp);
static char * ata_raid_type(struct ar_softc *rdp);
static char * ata_raid_flags(struct ar_softc *rdp);

/* debugging only */
static void ata_raid_print_meta(struct ar_softc *meta);
static void ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta);
static void ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta);
static void ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta);
static void ata_raid_intel_print_meta(struct intel_raid_conf *meta);
static void ata_raid_ite_print_meta(struct ite_raid_conf *meta);
static void ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta);
static void ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta);
static void ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta);
static void ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta);
static void ata_raid_promise_print_meta(struct promise_raid_conf *meta);
static void ata_raid_sii_print_meta(struct sii_raid_conf *meta);
static void ata_raid_sis_print_meta(struct sis_raid_conf *meta);
static void ata_raid_via_print_meta(struct via_raid_conf *meta);

/* internal vars */   
static struct ar_softc *ata_raid_arrays[MAX_ARRAYS];
static MALLOC_DEFINE(M_AR, "ar_driver", "ATA PseudoRAID driver");
static devclass_t ata_raid_sub_devclass;
static int testing = 0;

/* device structures */
static disk_strategy_t ata_raid_strategy;
static dumper_t ata_raid_dump;

static void
ata_raid_attach(struct ar_softc *rdp, int writeback)
{
    char buffer[32];
    int disk;

    mtx_init(&rdp->lock, "ATA PseudoRAID metadata lock", NULL, MTX_DEF);
    ata_raid_config_changed(rdp, writeback);

    /* sanitize arrays total_size % (width * interleave) == 0 */
    if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
      rdp->type == AR_T_RAID5) {
      rdp->total_sectors = (rdp->total_sectors/(rdp->interleave*rdp->width))*
                       (rdp->interleave * rdp->width);
      sprintf(buffer, " (stripe %d KB)",
            (rdp->interleave * DEV_BSIZE) / 1024);
    }
    else
      buffer[0] = '\0';
    rdp->disk = disk_alloc();
    rdp->disk->d_strategy = ata_raid_strategy;
    rdp->disk->d_dump = ata_raid_dump;
    rdp->disk->d_name = "ar";
    rdp->disk->d_sectorsize = DEV_BSIZE;
    rdp->disk->d_mediasize = (off_t)rdp->total_sectors * DEV_BSIZE;
    rdp->disk->d_fwsectors = rdp->sectors;
    rdp->disk->d_fwheads = rdp->heads;
    rdp->disk->d_maxsize = 128 * DEV_BSIZE;
    rdp->disk->d_drv1 = rdp;
    rdp->disk->d_unit = rdp->lun;
    disk_create(rdp->disk, DISK_VERSION);

    printf("ar%d: %juMB <%s %s%s> status: %s\n", rdp->lun,
         rdp->total_sectors / ((1024L * 1024L) / DEV_BSIZE),
         ata_raid_format(rdp), ata_raid_type(rdp),
         buffer, ata_raid_flags(rdp));

    if (testing || bootverbose)
      printf("ar%d: %ju sectors [%dC/%dH/%dS] <%s> subdisks defined as:\n",
             rdp->lun, rdp->total_sectors,
             rdp->cylinders, rdp->heads, rdp->sectors, rdp->name);

    for (disk = 0; disk < rdp->total_disks; disk++) {
      printf("ar%d: disk%d ", rdp->lun, disk);
      if (rdp->disks[disk].dev) {
          if (rdp->disks[disk].flags & AR_DF_PRESENT) {
            /* status of this disk in the array */
            if (rdp->disks[disk].flags & AR_DF_ONLINE)
                printf("READY ");
            else if (rdp->disks[disk].flags & AR_DF_SPARE)
                printf("SPARE ");
            else
                printf("FREE  ");

            /* what type of disk is this in the array */
            switch (rdp->type) {
            case AR_T_RAID1:
            case AR_T_RAID01:
                if (disk < rdp->width)
                  printf("(master) ");
                else
                  printf("(mirror) ");
            }
            
            /* which physical disk is used */
            printf("using %s at ata%d-%s\n",
                   device_get_nameunit(rdp->disks[disk].dev),
                   device_get_unit(device_get_parent(rdp->disks[disk].dev)),
                   (((struct ata_device *)
                   device_get_softc(rdp->disks[disk].dev))->unit == 
                   ATA_MASTER) ? "master" : "slave");
          }
          else if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
            printf("DOWN\n");
          else
            printf("INVALID no RAID config on this subdisk\n");
      }
      else
          printf("DOWN no device found for this subdisk\n");
    }
}

static int
ata_raid_ioctl(u_long cmd, caddr_t data)
{
    struct ata_ioc_raid_status *status = (struct ata_ioc_raid_status *)data;
    struct ata_ioc_raid_config *config = (struct ata_ioc_raid_config *)data;
    int *lun = (int *)data;
    int error = EOPNOTSUPP;

    switch (cmd) {
    case IOCATARAIDSTATUS_OLD:
      error = ata_raid_status_old(config);
      break;

    case IOCATARAIDSTATUS:
      error = ata_raid_status(status);
      break;
                  
    case IOCATARAIDCREATE:
      error = ata_raid_create(config);
      break;
       
    case IOCATARAIDDELETE:
      error = ata_raid_delete(*lun);
      break;
     
    case IOCATARAIDADDSPARE:
      error = ata_raid_addspare(config);
      break;
                      
    case IOCATARAIDREBUILD:
      error = ata_raid_rebuild(*lun);
      break;
    }
    return error;
}

static void
ata_raid_strategy(struct bio *bp)
{
    struct ar_softc *rdp = bp->bio_disk->d_drv1;
    struct ata_request *request;
    caddr_t data;
    u_int64_t blkno, lba, blk = 0;
    int count, chunk, drv, par = 0, change = 0;

    if (!(rdp->status & AR_S_READY) ||
      (bp->bio_cmd != BIO_READ && bp->bio_cmd != BIO_WRITE)) {
      biofinish(bp, NULL, EIO);
      return;
    }

    bp->bio_resid = bp->bio_bcount;
    for (count = howmany(bp->bio_bcount, DEV_BSIZE),
       blkno = bp->bio_pblkno, data = bp->bio_data;
       count > 0; 
       count -= chunk, blkno += chunk, data += (chunk * DEV_BSIZE)) {

      switch (rdp->type) {
      case AR_T_RAID1:
          drv = 0;
          lba = blkno;
          chunk = count;
          break;
      
      case AR_T_JBOD:
      case AR_T_SPAN:
          drv = 0;
          lba = blkno;
          while (lba >= rdp->disks[drv].sectors)
            lba -= rdp->disks[drv++].sectors;
          chunk = min(rdp->disks[drv].sectors - lba, count);
          break;
      
      case AR_T_RAID0:
      case AR_T_RAID01:
          chunk = blkno % rdp->interleave;
          drv = (blkno / rdp->interleave) % rdp->width;
          lba = (((blkno/rdp->interleave)/rdp->width)*rdp->interleave)+chunk;
          chunk = min(count, rdp->interleave - chunk);
          break;

      case AR_T_RAID5:
          drv = (blkno / rdp->interleave) % (rdp->width - 1);
          par = rdp->width - 1 - 
              (blkno / (rdp->interleave * (rdp->width - 1))) % rdp->width;
          if (drv >= par)
            drv++;
          lba = ((blkno/rdp->interleave)/(rdp->width-1))*(rdp->interleave) +
              ((blkno%(rdp->interleave*(rdp->width-1)))%rdp->interleave);
          chunk = min(count, rdp->interleave - (lba % rdp->interleave));
          break;

      default:
          printf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
          biofinish(bp, NULL, EIO);
          return;
      }
       
      /* offset on all but "first on HPTv2" */
      if (!(drv == 0 && rdp->format == AR_F_HPTV2_RAID))
          lba += rdp->offset_sectors;

      if (!(request = ata_raid_init_request(rdp, bp))) {
          biofinish(bp, NULL, EIO);
          return;
      }
      request->data = data;
      request->bytecount = chunk * DEV_BSIZE;
      request->u.ata.lba = lba;
      request->u.ata.count = request->bytecount / DEV_BSIZE;
          
      switch (rdp->type) {
      case AR_T_JBOD:
      case AR_T_SPAN:
      case AR_T_RAID0:
          if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
             (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
            rdp->disks[drv].flags &= ~AR_DF_ONLINE;
            ata_raid_config_changed(rdp, 1);
            ata_free_request(request);
            biofinish(bp, NULL, EIO);
            return;
          }
          request->this = drv;
          request->dev = rdp->disks[request->this].dev;
          ata_raid_send_request(request);
          break;

      case AR_T_RAID1:
      case AR_T_RAID01:
          if ((rdp->disks[drv].flags &
             (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
            !rdp->disks[drv].dev) {
            rdp->disks[drv].flags &= ~AR_DF_ONLINE;
            change = 1;
          }
          if ((rdp->disks[drv + rdp->width].flags &
             (AR_DF_PRESENT|AR_DF_ONLINE))==(AR_DF_PRESENT|AR_DF_ONLINE) &&
            !rdp->disks[drv + rdp->width].dev) {
            rdp->disks[drv + rdp->width].flags &= ~AR_DF_ONLINE;
            change = 1;
          }
          if (change)
            ata_raid_config_changed(rdp, 1);
          if (!(rdp->status & AR_S_READY)) {
            ata_free_request(request);
            biofinish(bp, NULL, EIO);
            return;
          }

          if (rdp->status & AR_S_REBUILDING)
            blk = ((lba / rdp->interleave) * rdp->width) * rdp->interleave +
                  (rdp->interleave * (drv % rdp->width)) +
                  lba % rdp->interleave;;

          if (bp->bio_cmd == BIO_READ) {
            int src_online =
                (rdp->disks[drv].flags & AR_DF_ONLINE);
            int mir_online =
                (rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE);

            /* if mirror gone or close to last access on source */
            if (!mir_online || 
                ((src_online) &&
                 bp->bio_pblkno >=
                  (rdp->disks[drv].last_lba - AR_PROXIMITY) &&
                 bp->bio_pblkno <=
                  (rdp->disks[drv].last_lba + AR_PROXIMITY))) {
                rdp->toggle = 0;
            } 
            /* if source gone or close to last access on mirror */
            else if (!src_online ||
                   ((mir_online) &&
                    bp->bio_pblkno >=
                    (rdp->disks[drv+rdp->width].last_lba-AR_PROXIMITY) &&
                    bp->bio_pblkno <=
                    (rdp->disks[drv+rdp->width].last_lba+AR_PROXIMITY))) {
                drv += rdp->width;
                rdp->toggle = 1;
            }
            /* not close to any previous access, toggle */
            else {
                if (rdp->toggle)
                  rdp->toggle = 0;
                else {
                  drv += rdp->width;
                  rdp->toggle = 1;
                }
            }

            if ((rdp->status & AR_S_REBUILDING) &&
                (blk <= rdp->rebuild_lba) &&
                ((blk + chunk) > rdp->rebuild_lba)) {
                struct ata_composite *composite;
                struct ata_request *rebuild;
                int this;

                /* figure out what part to rebuild */
                if (drv < rdp->width)
                  this = drv + rdp->width;
                else
                  this = drv - rdp->width;

                /* do we have a spare to rebuild on ? */
                if (rdp->disks[this].flags & AR_DF_SPARE) {
                  if ((composite = ata_alloc_composite())) {
                      if ((rebuild = ata_alloc_request())) {
                        rdp->rebuild_lba = blk + chunk;
                        bcopy(request, rebuild,
                              sizeof(struct ata_request));
                        rebuild->this = this;
                        rebuild->dev = rdp->disks[this].dev;
                        rebuild->flags &= ~ATA_R_READ;
                        rebuild->flags |= ATA_R_WRITE;
                        mtx_init(&composite->lock,
                               "ATA PseudoRAID rebuild lock",
                               NULL, MTX_DEF);
                        composite->residual = request->bytecount;
                        composite->rd_needed |= (1 << drv);
                        composite->wr_depend |= (1 << drv);
                        composite->wr_needed |= (1 << this);
                        composite->request[drv] = request;
                        composite->request[this] = rebuild;
                        request->composite = composite;
                        rebuild->composite = composite;
                        ata_raid_send_request(rebuild);
                      }
                      else {
                        ata_free_composite(composite);
                        printf("DOH! ata_alloc_request failed!\n");
                      }
                  }
                  else {
                      printf("DOH! ata_alloc_composite failed!\n");
                  }
                }
                else if (rdp->disks[this].flags & AR_DF_ONLINE) {
                  /*
                   * if we got here we are a chunk of a RAID01 that 
                   * does not need a rebuild, but we need to increment
                   * the rebuild_lba address to get the rebuild to
                   * move to the next chunk correctly
                   */
                  rdp->rebuild_lba = blk + chunk;
                }
                else
                  printf("DOH! we didn't find the rebuild part\n");
            }
          }
          if (bp->bio_cmd == BIO_WRITE) {
            if ((rdp->disks[drv+rdp->width].flags & AR_DF_ONLINE) ||
                ((rdp->status & AR_S_REBUILDING) &&
                 (rdp->disks[drv+rdp->width].flags & AR_DF_SPARE) &&
                 ((blk < rdp->rebuild_lba) ||
                  ((blk <= rdp->rebuild_lba) &&
                   ((blk + chunk) > rdp->rebuild_lba))))) {
                if ((rdp->disks[drv].flags & AR_DF_ONLINE) ||
                  ((rdp->status & AR_S_REBUILDING) &&
                   (rdp->disks[drv].flags & AR_DF_SPARE) &&
                   ((blk < rdp->rebuild_lba) ||
                    ((blk <= rdp->rebuild_lba) &&
                     ((blk + chunk) > rdp->rebuild_lba))))) {
                  struct ata_request *mirror;
                  struct ata_composite *composite;
                  int this = drv + rdp->width;

                  if ((composite = ata_alloc_composite())) {
                      if ((mirror = ata_alloc_request())) {
                        if ((blk <= rdp->rebuild_lba) &&
                            ((blk + chunk) > rdp->rebuild_lba))
                            rdp->rebuild_lba = blk + chunk;
                        bcopy(request, mirror,
                              sizeof(struct ata_request));
                        mirror->this = this;
                        mirror->dev = rdp->disks[this].dev;
                        mtx_init(&composite->lock,
                               "ATA PseudoRAID mirror lock",
                               NULL, MTX_DEF);
                        composite->residual = request->bytecount;
                        composite->wr_needed |= (1 << drv);
                        composite->wr_needed |= (1 << this);
                        composite->request[drv] = request;
                        composite->request[this] = mirror;
                        request->composite = composite;
                        mirror->composite = composite;
                        ata_raid_send_request(mirror);
                        rdp->disks[this].last_lba =
                            bp->bio_pblkno + chunk;
                      }
                      else {
                        ata_free_composite(composite);
                        printf("DOH! ata_alloc_request failed!\n");
                      }
                  }
                  else {
                      printf("DOH! ata_alloc_composite failed!\n");
                  }
                }
                else
                  drv += rdp->width;
            }
          }
          request->this = drv;
          request->dev = rdp->disks[request->this].dev;
          ata_raid_send_request(request);
          rdp->disks[request->this].last_lba = bp->bio_pblkno + chunk;
          break;

      case AR_T_RAID5:
          if (((rdp->disks[drv].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
             (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[drv].dev)) {
            rdp->disks[drv].flags &= ~AR_DF_ONLINE;
            change = 1;
          }
          if (((rdp->disks[par].flags & (AR_DF_PRESENT|AR_DF_ONLINE)) ==
             (AR_DF_PRESENT|AR_DF_ONLINE) && !rdp->disks[par].dev)) {
            rdp->disks[par].flags &= ~AR_DF_ONLINE;
            change = 1;
          }
          if (change)
            ata_raid_config_changed(rdp, 1);
          if (!(rdp->status & AR_S_READY)) {
            ata_free_request(request);
            biofinish(bp, NULL, EIO);
            return;
          }
          if (rdp->status & AR_S_DEGRADED) {
            /* do the XOR game if possible */
          }
          else {
            request->this = drv;
            request->dev = rdp->disks[request->this].dev;
            if (bp->bio_cmd == BIO_READ) {
                ata_raid_send_request(request);
            }
            if (bp->bio_cmd == BIO_WRITE) { 
                ata_raid_send_request(request);
                // sikre at læs-modify-skriv til hver disk er atomarisk.
                // par kopi af request
                // læse orgdata fra drv
                // skriv nydata til drv
                // læse parorgdata fra par
                // skriv orgdata xor parorgdata xor nydata til par
            }
          }
          break;

      default:
          printf("ar%d: unknown array type in ata_raid_strategy\n", rdp->lun);
      }
    }
}

static void
ata_raid_done(struct ata_request *request)
{
    struct ar_softc *rdp = request->driver;
    struct ata_composite *composite = NULL;
    struct bio *bp = request->bio;
    int i, mirror, finished = 0;

    switch (rdp->type) {
    case AR_T_JBOD:
    case AR_T_SPAN:
    case AR_T_RAID0:
      if (request->result) {
          rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
          ata_raid_config_changed(rdp, 1);
          bp->bio_error = request->result;
          finished = 1;
      }
      else {
          bp->bio_resid -= request->donecount;
          if (!bp->bio_resid)
            finished = 1;
      }
      break;

    case AR_T_RAID1:
    case AR_T_RAID01:
      if (request->this < rdp->width)
          mirror = request->this + rdp->width;
      else
          mirror = request->this - rdp->width;
      if (request->result) {
          rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
          ata_raid_config_changed(rdp, 1);
      }
      if (rdp->status & AR_S_READY) {
          u_int64_t blk = 0;

          if (rdp->status & AR_S_REBUILDING) 
            blk = ((request->u.ata.lba / rdp->interleave) * rdp->width) *
                  rdp->interleave + (rdp->interleave * 
                  (request->this % rdp->width)) +
                  request->u.ata.lba % rdp->interleave;

          if (bp->bio_cmd == BIO_READ) {

            /* is this a rebuild composite */
            if ((composite = request->composite)) {
                mtx_lock(&composite->lock);
            
                /* handle the read part of a rebuild composite */
                if (request->flags & ATA_R_READ) {

                  /* if read failed array is now broken */
                  if (request->result) {
                      rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
                      ata_raid_config_changed(rdp, 1);
                      bp->bio_error = request->result;
                      rdp->rebuild_lba = blk;
                      finished = 1;
                  }

                  /* good data, update how far we've gotten */
                  else {
                      bp->bio_resid -= request->donecount;
                      composite->residual -= request->donecount;
                      if (!composite->residual) {
                        if (composite->wr_done & (1 << mirror))
                            finished = 1;
                      }
                  }
                }

                /* handle the write part of a rebuild composite */
                else if (request->flags & ATA_R_WRITE) {
                  if (composite->rd_done & (1 << mirror)) {
                      if (request->result) {
                        printf("DOH! rebuild failed\n"); /* XXX SOS */
                        rdp->rebuild_lba = blk;
                      }
                      if (!composite->residual)
                        finished = 1;
                  }
                }
                mtx_unlock(&composite->lock);
            }

            /* if read failed retry on the mirror */
            else if (request->result) {
                request->dev = rdp->disks[mirror].dev;
                request->flags &= ~ATA_R_TIMEOUT;
                ata_raid_send_request(request);
                return;
            }

            /* we have good data */
            else {
                bp->bio_resid -= request->donecount;
                if (!bp->bio_resid)
                  finished = 1;
            }
          }
          else if (bp->bio_cmd == BIO_WRITE) {
            /* do we have a mirror or rebuild to deal with ? */
            if ((composite = request->composite)) {
                mtx_lock(&composite->lock);
                if (composite->wr_done & (1 << mirror)) {
                  if (request->result) {
                      if (composite->request[mirror]->result) {
                        printf("DOH! all disks failed and got here\n");
                        bp->bio_error = EIO;
                      }
                      if (rdp->status & AR_S_REBUILDING) {
                        rdp->rebuild_lba = blk;
                        printf("DOH! rebuild failed\n"); /* XXX SOS */
                      }
                      bp->bio_resid -=
                        composite->request[mirror]->donecount;
                      composite->residual -=
                        composite->request[mirror]->donecount;
                  }
                  else {
                      bp->bio_resid -= request->donecount;
                      composite->residual -= request->donecount;
                  }
                  if (!composite->residual)
                      finished = 1;
                }
                mtx_unlock(&composite->lock);
            }
            /* no mirror we are done */
            else {
                bp->bio_resid -= request->donecount;
                if (!bp->bio_resid)
                  finished = 1;
            }
          }
      }
      else 
          biofinish(bp, NULL, request->result);
      break;

    case AR_T_RAID5:
      if (request->result) {
          rdp->disks[request->this].flags &= ~AR_DF_ONLINE;
          ata_raid_config_changed(rdp, 1);
          if (rdp->status & AR_S_READY) {
            if (bp->bio_cmd == BIO_READ) {
                /* do the XOR game to recover data */
            }
            if (bp->bio_cmd == BIO_WRITE) {
                /* if the parity failed we're OK sortof */
                /* otherwise wee need to do the XOR long dance */
            }
            finished = 1;
          }
          else
            biofinish(bp, NULL, request->result);
      }
      else {
          // did we have an XOR game going ??
          bp->bio_resid -= request->donecount;
          if (!bp->bio_resid)
            finished = 1;
      }
      break;

    default:
      printf("ar%d: unknown array type in ata_raid_done\n", rdp->lun);
    }

    if (finished) {
      if ((rdp->status & AR_S_REBUILDING) && 
          rdp->rebuild_lba >= rdp->total_sectors) {
          int disk;

          for (disk = 0; disk < rdp->total_disks; disk++) {
            if ((rdp->disks[disk].flags &
                 (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) ==
                (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) {
                rdp->disks[disk].flags &= ~AR_DF_SPARE;
                rdp->disks[disk].flags |= AR_DF_ONLINE;
            }
          }
          rdp->status &= ~AR_S_REBUILDING;
          ata_raid_config_changed(rdp, 1);
      }
      if (!bp->bio_resid)
          biodone(bp);
    }
             
    if (composite) {
      if (finished) {
          /* we are done with this composite, free all resources */
          for (i = 0; i < 32; i++) {
            if (composite->rd_needed & (1 << i) ||
                composite->wr_needed & (1 << i)) {
                ata_free_request(composite->request[i]);
            }
          }
          mtx_destroy(&composite->lock);
          ata_free_composite(composite);
      }
    }
    else
      ata_free_request(request);
}

static int
ata_raid_dump(void *arg, void *virtual, vm_offset_t physical,
            off_t offset, size_t length)
{
    struct disk *dp = arg;
    struct ar_softc *rdp = dp->d_drv1;
    struct bio bp;

    /* length zero is special and really means flush buffers to media */
    if (!length) {
      int disk, error;

      for (disk = 0, error = 0; disk < rdp->total_disks; disk++) 
          if (rdp->disks[disk].dev)
            error |= ata_controlcmd(rdp->disks[disk].dev,
                              ATA_FLUSHCACHE, 0, 0, 0);
      return (error ? EIO : 0);
    }

    bzero(&bp, sizeof(struct bio));
    bp.bio_disk = dp;
    bp.bio_pblkno = offset / DEV_BSIZE;
    bp.bio_bcount = length;
    bp.bio_data = virtual;
    bp.bio_cmd = BIO_WRITE;
    ata_raid_strategy(&bp);
    return bp.bio_error;
}

static void
ata_raid_config_changed(struct ar_softc *rdp, int writeback)
{
    int disk, count, status;

    mtx_lock(&rdp->lock);
    /* set default all working mode */
    status = rdp->status;
    rdp->status &= ~AR_S_DEGRADED;
    rdp->status |= AR_S_READY;

    /* make sure all lost drives are accounted for */
    for (disk = 0; disk < rdp->total_disks; disk++) {
      if (!(rdp->disks[disk].flags & AR_DF_PRESENT))
          rdp->disks[disk].flags &= ~AR_DF_ONLINE;
    }

    /* depending on RAID type figure out our health status */
    switch (rdp->type) {
    case AR_T_JBOD:
    case AR_T_SPAN:
    case AR_T_RAID0:
      for (disk = 0; disk < rdp->total_disks; disk++) 
          if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
            rdp->status &= ~AR_S_READY; 
      break;

    case AR_T_RAID1:
    case AR_T_RAID01:
      for (disk = 0; disk < rdp->width; disk++) {
          if (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
            !(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) {
            rdp->status &= ~AR_S_READY;
          }
          else if (((rdp->disks[disk].flags & AR_DF_ONLINE) &&
                  !(rdp->disks[disk + rdp->width].flags & AR_DF_ONLINE)) ||
                 (!(rdp->disks[disk].flags & AR_DF_ONLINE) &&
                  (rdp->disks [disk + rdp->width].flags & AR_DF_ONLINE))) {
            rdp->status |= AR_S_DEGRADED;
          }
      }
      break;

    case AR_T_RAID5:
      for (count = 0, disk = 0; disk < rdp->total_disks; disk++) {
          if (!(rdp->disks[disk].flags & AR_DF_ONLINE))
            count++;
      }
      if (count) {
          if (count > 1)
            rdp->status &= ~AR_S_READY;
          else
            rdp->status |= AR_S_DEGRADED;
      }
      break;
    default:
      rdp->status &= ~AR_S_READY;
    }

    if (rdp->status != status) {
      if (!(rdp->status & AR_S_READY)) {
          printf("ar%d: FAILURE - %s array broken\n",
               rdp->lun, ata_raid_type(rdp));
      }
      else if (rdp->status & AR_S_DEGRADED) {
          if (rdp->type & (AR_T_RAID1 | AR_T_RAID01))
            printf("ar%d: WARNING - mirror", rdp->lun);
          else
            printf("ar%d: WARNING - parity", rdp->lun);
          printf(" protection lost. %s array in DEGRADED mode\n",
               ata_raid_type(rdp));
      }
    }
    mtx_unlock(&rdp->lock);
    if (writeback)
      ata_raid_write_metadata(rdp);

}

static int
ata_raid_status_old(struct ata_ioc_raid_config *config)
{
    struct ata_ioc_raid_status status;
    int error, i;

    status.lun = config->lun;
    error = ata_raid_status(&status);
    if (error)
      return error;

    config->type = status.type;
    config->total_disks = status.total_disks;
    config->interleave = status.interleave;
    config->status = status.status;
    config->progress = status.progress;

    for (i = 0; i < config->total_disks; i++)
      config->disks[i] = status.disks[i].lun;
    return (0);
}

static int
ata_raid_status(struct ata_ioc_raid_status *status)
{
    struct ar_softc *rdp;
    int i;
      
    if (!(rdp = ata_raid_arrays[status->lun]))
      return ENXIO;
      
    status->type = rdp->type;
    status->total_disks = rdp->total_disks;
    for (i = 0; i < rdp->total_disks; i++ ) {
      status->disks[i].state = 0;
      if ((rdp->disks[i].flags & AR_DF_PRESENT) && rdp->disks[i].dev) {
          status->disks[i].lun = device_get_unit(rdp->disks[i].dev);
          if (rdp->disks[i].flags & AR_DF_PRESENT)
            status->disks[i].state |= AR_DISK_PRESENT;
          if (rdp->disks[i].flags & AR_DF_ONLINE)
            status->disks[i].state |= AR_DISK_ONLINE;
          if (rdp->disks[i].flags & AR_DF_SPARE)
            status->disks[i].state |= AR_DISK_SPARE;
      } else
          status->disks[i].lun = -1;
    }
    status->interleave = rdp->interleave;
    status->status = rdp->status;
    status->progress = 100 * rdp->rebuild_lba / rdp->total_sectors;
    return 0;
}

static int
ata_raid_create(struct ata_ioc_raid_config *config)
{
    struct ar_softc *rdp;
    device_t subdisk;
    int array, disk;
    int ctlr = 0, disk_size = 0, total_disks = 0;

    for (array = 0; array < MAX_ARRAYS; array++) {
      if (!ata_raid_arrays[array])
          break;
    }
    if (array >= MAX_ARRAYS)
      return ENOSPC;

    if (!(rdp = (struct ar_softc*)malloc(sizeof(struct ar_softc), M_AR,
                               M_NOWAIT | M_ZERO))) {
      printf("ar%d: no memory for metadata storage\n", array);
      return ENOMEM;
    }

    for (disk = 0; disk < config->total_disks; disk++) {
      if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
                                 config->disks[disk]))) {
          struct ata_raid_subdisk *ars = device_get_softc(subdisk);

          /* is device already assigned to another array ? */
          if (ars->raid[rdp->volume]) {
            config->disks[disk] = -1;
            free(rdp, M_AR);
            return EBUSY;
          }
          rdp->disks[disk].dev = device_get_parent(subdisk);

          switch (pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev))) {
          case ATA_HIGHPOINT_ID:
            /* 
             * we need some way to decide if it should be v2 or v3
             * for now just use v2 since the v3 BIOS knows how to 
             * handle that as well.
             */
            ctlr = AR_F_HPTV2_RAID;
            rdp->disks[disk].sectors = HPTV3_LBA(rdp->disks[disk].dev);
            break;

          case ATA_INTEL_ID:
            ctlr = AR_F_INTEL_RAID;
            rdp->disks[disk].sectors = INTEL_LBA(rdp->disks[disk].dev);
            break;

          case ATA_ITE_ID:
            ctlr = AR_F_ITE_RAID;
            rdp->disks[disk].sectors = ITE_LBA(rdp->disks[disk].dev);
            break;

          case ATA_JMICRON_ID:
            ctlr = AR_F_JMICRON_RAID;
            rdp->disks[disk].sectors = JMICRON_LBA(rdp->disks[disk].dev);
            break;

          case 0:     /* XXX SOS cover up for bug in our PCI code */
          case ATA_PROMISE_ID:        
            ctlr = AR_F_PROMISE_RAID;
            rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
            break;

          case ATA_SIS_ID:        
            ctlr = AR_F_SIS_RAID;
            rdp->disks[disk].sectors = SIS_LBA(rdp->disks[disk].dev);
            break;

          case ATA_ATI_ID:        
          case ATA_VIA_ID:        
            ctlr = AR_F_VIA_RAID;
            rdp->disks[disk].sectors = VIA_LBA(rdp->disks[disk].dev);
            break;

          default:
            /* XXX SOS
             * right, so here we are, we have an ATA chip and we want
             * to create a RAID and store the metadata.
             * we need to find a way to tell what kind of metadata this
             * hardware's BIOS might be using (good ideas are welcomed)
             * for now we just use our own native FreeBSD format.
             * the only way to get support for the BIOS format is to
             * setup the RAID from there, in that case we pickup the
             * metadata format from the disks (if we support it).
             */
            printf("WARNING!! - not able to determine metadata format\n"
                   "WARNING!! - Using FreeBSD PseudoRAID metadata\n"
                   "If that is not what you want, use the BIOS to "
                   "create the array\n");
            ctlr = AR_F_FREEBSD_RAID;
            rdp->disks[disk].sectors = PROMISE_LBA(rdp->disks[disk].dev);
            break;
          }

          /* we need all disks to be of the same format */
          if ((rdp->format & AR_F_FORMAT_MASK) &&
            (rdp->format & AR_F_FORMAT_MASK) != (ctlr & AR_F_FORMAT_MASK)) {
            free(rdp, M_AR);
            return EXDEV;
          }
          else
            rdp->format = ctlr;
          
          /* use the smallest disk of the lots size */
          /* gigabyte boundry ??? XXX SOS */
          if (disk_size)
            disk_size = min(rdp->disks[disk].sectors, disk_size);
          else
            disk_size = rdp->disks[disk].sectors;
          rdp->disks[disk].flags = 
            (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);

          total_disks++;
      }
      else {
          config->disks[disk] = -1;
          free(rdp, M_AR);
          return ENXIO;
      }
    }

    if (total_disks != config->total_disks) {
      free(rdp, M_AR);
      return ENODEV;
    }

    switch (config->type) {
    case AR_T_JBOD:
    case AR_T_SPAN:
    case AR_T_RAID0:
      break;

    case AR_T_RAID1:
      if (total_disks != 2) {
          free(rdp, M_AR);
          return EPERM;
      }
      break;

    case AR_T_RAID01:
      if (total_disks % 2 != 0) {
          free(rdp, M_AR);
          return EPERM;
      }
      break;

    case AR_T_RAID5:
      if (total_disks < 3) {
          free(rdp, M_AR);
          return EPERM;
      }
      break;

    default:
      free(rdp, M_AR);
      return EOPNOTSUPP;
    }
    rdp->type = config->type;
    rdp->lun = array;
    if (rdp->type == AR_T_RAID0 || rdp->type == AR_T_RAID01 ||
      rdp->type == AR_T_RAID5) {
      int bit = 0;

      while (config->interleave >>= 1)
          bit++;
      rdp->interleave = 1 << bit;
    }
    rdp->offset_sectors = 0;

    /* values that depend on metadata format */
    switch (rdp->format) {
    case AR_F_ADAPTEC_RAID:
      rdp->interleave = min(max(32, rdp->interleave), 128); /*+*/
      break;

    case AR_F_HPTV2_RAID:
      rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
      rdp->offset_sectors = HPTV2_LBA(x) + 1;
      break;

    case AR_F_HPTV3_RAID:
      rdp->interleave = min(max(32, rdp->interleave), 4096); /*+*/
      break;

    case AR_F_INTEL_RAID:
      rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
      break;

    case AR_F_ITE_RAID:
      rdp->interleave = min(max(2, rdp->interleave), 128); /*+*/
      break;

    case AR_F_JMICRON_RAID:
      rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
      break;

    case AR_F_LSIV2_RAID:
      rdp->interleave = min(max(2, rdp->interleave), 4096);
      break;

    case AR_F_LSIV3_RAID:
      rdp->interleave = min(max(2, rdp->interleave), 256);
      break;

    case AR_F_PROMISE_RAID:
      rdp->interleave = min(max(2, rdp->interleave), 2048); /*+*/
      break;

    case AR_F_SII_RAID:
      rdp->interleave = min(max(8, rdp->interleave), 256); /*+*/
      break;

    case AR_F_SIS_RAID:
      rdp->interleave = min(max(32, rdp->interleave), 512); /*+*/
      break;

    case AR_F_VIA_RAID:
      rdp->interleave = min(max(8, rdp->interleave), 128); /*+*/
      break;
    }

    rdp->total_disks = total_disks;
    rdp->width = total_disks / (rdp->type & (AR_RAID1 | AR_T_RAID01) ? 2 : 1);
    rdp->total_sectors = disk_size * (rdp->width - (rdp->type == AR_RAID5));
    rdp->heads = 255;
    rdp->sectors = 63;
    rdp->cylinders = rdp->total_sectors / (255 * 63);
    rdp->rebuild_lba = 0;
    rdp->status |= AR_S_READY;

    /* we are committed to this array, grap the subdisks */
    for (disk = 0; disk < config->total_disks; disk++) {
      if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
                                 config->disks[disk]))) {
          struct ata_raid_subdisk *ars = device_get_softc(subdisk);

          ars->raid[rdp->volume] = rdp;
          ars->disk_number[rdp->volume] = disk;
      }
    }
    ata_raid_attach(rdp, 1);
    ata_raid_arrays[array] = rdp;
    config->lun = array;
    return 0;
}

static int
ata_raid_delete(int array)
{
    struct ar_softc *rdp;    
    device_t subdisk;
    int disk;

    if (!(rdp = ata_raid_arrays[array]))
      return ENXIO;
 
    rdp->status &= ~AR_S_READY;
    if (rdp->disk)
      disk_destroy(rdp->disk);

    for (disk = 0; disk < rdp->total_disks; disk++) {
      if ((rdp->disks[disk].flags & AR_DF_PRESENT) && rdp->disks[disk].dev) {
          if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
                 device_get_unit(rdp->disks[disk].dev)))) {
            struct ata_raid_subdisk *ars = device_get_softc(subdisk);

            if (ars->raid[rdp->volume] != rdp)           /* XXX SOS */
                device_printf(subdisk, "DOH! this disk doesn't belong\n");
            if (ars->disk_number[rdp->volume] != disk)   /* XXX SOS */
                device_printf(subdisk, "DOH! this disk number is wrong\n");
            ars->raid[rdp->volume] = NULL;
            ars->disk_number[rdp->volume] = -1;
          }
          rdp->disks[disk].flags = 0;
      }
    }
    ata_raid_wipe_metadata(rdp);
    ata_raid_arrays[array] = NULL;
    free(rdp, M_AR);
    return 0;
}

static int
ata_raid_addspare(struct ata_ioc_raid_config *config)
{
    struct ar_softc *rdp;    
    device_t subdisk;
    int disk;

    if (!(rdp = ata_raid_arrays[config->lun]))
      return ENXIO;
    if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
      return ENXIO;
    if (rdp->status & AR_S_REBUILDING)
      return EBUSY; 
    switch (rdp->type) {
    case AR_T_RAID1:
    case AR_T_RAID01:
    case AR_T_RAID5:
      for (disk = 0; disk < rdp->total_disks; disk++ ) {

          if (((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
             (AR_DF_PRESENT | AR_DF_ONLINE)) && rdp->disks[disk].dev)
            continue;

          if ((subdisk = devclass_get_device(ata_raid_sub_devclass,
                                     config->disks[0] ))) {
            struct ata_raid_subdisk *ars = device_get_softc(subdisk);

            if (ars->raid[rdp->volume]) 
                return EBUSY;
    
            /* XXX SOS validate size etc etc */
            ars->raid[rdp->volume] = rdp;
            ars->disk_number[rdp->volume] = disk;
            rdp->disks[disk].dev = device_get_parent(subdisk);
            rdp->disks[disk].flags =
                (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE);

            device_printf(rdp->disks[disk].dev,
                        "inserted into ar%d disk%d as spare\n",
                        rdp->lun, disk);
            ata_raid_config_changed(rdp, 1);
            return 0;
          }
      }
      return ENXIO;

    default:
      return EPERM;
    }
}
 
static int
ata_raid_rebuild(int array)
{
    struct ar_softc *rdp;    
    int disk, count;

    if (!(rdp = ata_raid_arrays[array]))
      return ENXIO;
    /* XXX SOS we should lock the rdp softc here */
    if (!(rdp->status & AR_S_DEGRADED) || !(rdp->status & AR_S_READY))
      return ENXIO;
    if (rdp->status & AR_S_REBUILDING)
      return EBUSY; 

    switch (rdp->type) {
    case AR_T_RAID1:
    case AR_T_RAID01:
    case AR_T_RAID5:
      for (count = 0, disk = 0; disk < rdp->total_disks; disk++ ) {
          if (((rdp->disks[disk].flags &
              (AR_DF_PRESENT|AR_DF_ASSIGNED|AR_DF_ONLINE|AR_DF_SPARE)) ==
             (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_SPARE)) &&
            rdp->disks[disk].dev) {
            count++;
          }
      }

      if (count) {
          rdp->rebuild_lba = 0;
          rdp->status |= AR_S_REBUILDING;
          return 0;
      }
      return EIO;

    default:
      return EPERM;
    }
}

static int
ata_raid_read_metadata(device_t subdisk)
{
    devclass_t pci_devclass = devclass_find("pci");
    devclass_t devclass=device_get_devclass(GRANDPARENT(GRANDPARENT(subdisk)));

    /* prioritize vendor native metadata layout if possible */
    if (devclass == pci_devclass) {
      switch (pci_get_vendor(GRANDPARENT(device_get_parent(subdisk)))) {
      case ATA_HIGHPOINT_ID: 
          if (ata_raid_hptv3_read_meta(subdisk, ata_raid_arrays))
            return 0;
          if (ata_raid_hptv2_read_meta(subdisk, ata_raid_arrays))
            return 0;
          break;

      case ATA_INTEL_ID:
          if (ata_raid_intel_read_meta(subdisk, ata_raid_arrays))
            return 0;
          break;

      case ATA_ITE_ID:
          if (ata_raid_ite_read_meta(subdisk, ata_raid_arrays))
            return 0;
          break;

      case ATA_JMICRON_ID:
          if (ata_raid_jmicron_read_meta(subdisk, ata_raid_arrays))
            return 0;
          break;

      case ATA_NVIDIA_ID:
          if (ata_raid_nvidia_read_meta(subdisk, ata_raid_arrays))
            return 0;
          break;

      case 0:         /* XXX SOS cover up for bug in our PCI code */
      case ATA_PROMISE_ID: 
          if (ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 0))
            return 0;
          break;

      case ATA_ATI_ID:
      case ATA_SILICON_IMAGE_ID:
          if (ata_raid_sii_read_meta(subdisk, ata_raid_arrays))
            return 0;
          break;

      case ATA_SIS_ID:
          if (ata_raid_sis_read_meta(subdisk, ata_raid_arrays))
            return 0;
          break;

      case ATA_VIA_ID:
          if (ata_raid_via_read_meta(subdisk, ata_raid_arrays))
            return 0;
          break;
      }
    }
    
    /* handle controllers that have multiple layout possibilities */
    /* NOTE: the order of these are not insignificant */

    /* Adaptec HostRAID */
    if (ata_raid_adaptec_read_meta(subdisk, ata_raid_arrays))
      return 0;

    /* LSILogic v3 and v2 */
    if (ata_raid_lsiv3_read_meta(subdisk, ata_raid_arrays))
      return 0;
    if (ata_raid_lsiv2_read_meta(subdisk, ata_raid_arrays))
      return 0;

    /* if none of the above matched, try FreeBSD native format */
    return ata_raid_promise_read_meta(subdisk, ata_raid_arrays, 1);
}

static int
ata_raid_write_metadata(struct ar_softc *rdp)
{
    switch (rdp->format) {
    case AR_F_FREEBSD_RAID:
    case AR_F_PROMISE_RAID: 
      return ata_raid_promise_write_meta(rdp);

    case AR_F_HPTV3_RAID:
    case AR_F_HPTV2_RAID:
      /*
       * always write HPT v2 metadata, the v3 BIOS knows it as well.
       * this is handy since we cannot know what version BIOS is on there
       */
      return ata_raid_hptv2_write_meta(rdp);

    case AR_F_INTEL_RAID:
      return ata_raid_intel_write_meta(rdp);

    case AR_F_JMICRON_RAID:
      return ata_raid_jmicron_write_meta(rdp);

    case AR_F_SIS_RAID:
      return ata_raid_sis_write_meta(rdp);

    case AR_F_VIA_RAID:
      return ata_raid_via_write_meta(rdp);
#if 0
    case AR_F_HPTV3_RAID:
      return ata_raid_hptv3_write_meta(rdp);

    case AR_F_ADAPTEC_RAID:
      return ata_raid_adaptec_write_meta(rdp);

    case AR_F_ITE_RAID:
      return ata_raid_ite_write_meta(rdp);

    case AR_F_LSIV2_RAID:
      return ata_raid_lsiv2_write_meta(rdp);

    case AR_F_LSIV3_RAID:
      return ata_raid_lsiv3_write_meta(rdp);

    case AR_F_NVIDIA_RAID:
      return ata_raid_nvidia_write_meta(rdp);

    case AR_F_SII_RAID:
      return ata_raid_sii_write_meta(rdp);

#endif
    default:
      printf("ar%d: writing of %s metadata is NOT supported yet\n",
             rdp->lun, ata_raid_format(rdp));
    }
    return -1;
}

static int
ata_raid_wipe_metadata(struct ar_softc *rdp)
{
    int disk, error = 0;
    u_int64_t lba;
    u_int32_t size;
    u_int8_t *meta;

    for (disk = 0; disk < rdp->total_disks; disk++) {
      if (rdp->disks[disk].dev) {
          switch (rdp->format) {
          case AR_F_ADAPTEC_RAID:
            lba = ADP_LBA(rdp->disks[disk].dev);
            size = sizeof(struct adaptec_raid_conf);
            break;

          case AR_F_HPTV2_RAID:
            lba = HPTV2_LBA(rdp->disks[disk].dev);
            size = sizeof(struct hptv2_raid_conf);
            break;
            
          case AR_F_HPTV3_RAID:
            lba = HPTV3_LBA(rdp->disks[disk].dev);
            size = sizeof(struct hptv3_raid_conf);
            break;

          case AR_F_INTEL_RAID:
            lba = INTEL_LBA(rdp->disks[disk].dev);
            size = 3 * 512;         /* XXX SOS */
            break;

          case AR_F_ITE_RAID:
            lba = ITE_LBA(rdp->disks[disk].dev);
            size = sizeof(struct ite_raid_conf);
            break;

          case AR_F_JMICRON_RAID:
            lba = JMICRON_LBA(rdp->disks[disk].dev);
            size = sizeof(struct jmicron_raid_conf);
            break;

          case AR_F_LSIV2_RAID:
            lba = LSIV2_LBA(rdp->disks[disk].dev);
            size = sizeof(struct lsiv2_raid_conf);
            break;

          case AR_F_LSIV3_RAID:
            lba = LSIV3_LBA(rdp->disks[disk].dev);
            size = sizeof(struct lsiv3_raid_conf);
            break;

          case AR_F_NVIDIA_RAID:
            lba = NVIDIA_LBA(rdp->disks[disk].dev);
            size = sizeof(struct nvidia_raid_conf);
            break;

          case AR_F_FREEBSD_RAID:
          case AR_F_PROMISE_RAID: 
            lba = PROMISE_LBA(rdp->disks[disk].dev);
            size = sizeof(struct promise_raid_conf);
            break;

          case AR_F_SII_RAID:
            lba = SII_LBA(rdp->disks[disk].dev);
            size = sizeof(struct sii_raid_conf);
            break;

          case AR_F_SIS_RAID:
            lba = SIS_LBA(rdp->disks[disk].dev);
            size = sizeof(struct sis_raid_conf);
            break;

          case AR_F_VIA_RAID:
            lba = VIA_LBA(rdp->disks[disk].dev);
            size = sizeof(struct via_raid_conf);
            break;

          default:
            printf("ar%d: wiping of %s metadata is NOT supported yet\n",
                   rdp->lun, ata_raid_format(rdp));
            return ENXIO;
          }
          if (!(meta = malloc(size, M_AR, M_NOWAIT | M_ZERO)))
            return ENOMEM;
          if (ata_raid_rw(rdp->disks[disk].dev, lba, meta, size,
                      ATA_R_WRITE | ATA_R_DIRECT)) {
            device_printf(rdp->disks[disk].dev, "wipe metadata failed\n");
            error = EIO;
          }
          free(meta, M_AR);
      }
    }
    return error;
}

/* Adaptec HostRAID Metadata */
static int
ata_raid_adaptec_read_meta(device_t dev, struct ar_softc **raidp)
{
    struct ata_raid_subdisk *ars = device_get_softc(dev);
    device_t parent = device_get_parent(dev);
    struct adaptec_raid_conf *meta;
    struct ar_softc *raid;
    int array, disk, retval = 0; 

    if (!(meta = (struct adaptec_raid_conf *)
        malloc(sizeof(struct adaptec_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
      return ENOMEM;

    if (ata_raid_rw(parent, ADP_LBA(parent),
                meta, sizeof(struct adaptec_raid_conf), ATA_R_READ)) {
      if (testing || bootverbose)
          device_printf(parent, "Adaptec read metadata failed\n");
      goto adaptec_out;
    }

    /* check if this is a Adaptec RAID struct */
    if (meta->magic_0 != ADP_MAGIC_0 || meta->magic_3 != ADP_MAGIC_3) {
      if (testing || bootverbose)
          device_printf(parent, "Adaptec check1 failed\n");
      goto adaptec_out;
    }

    if (testing || bootverbose)
      ata_raid_adaptec_print_meta(meta);

    /* now convert Adaptec metadata into our generic form */
    for (array = 0; array < MAX_ARRAYS; array++) {
      if (!raidp[array]) {
          raidp[array] = 
            (struct ar_softc *)malloc(sizeof(struct ar_softc), M_AR,
                                M_NOWAIT | M_ZERO);
          if (!raidp[array]) {
            device_printf(parent, "failed to allocate metadata storage\n");
            goto adaptec_out;
          }
      }
      raid = raidp[array];
      if (raid->format && (raid->format != AR_F_ADAPTEC_RAID))
          continue;

      if (raid->magic_0 && raid->magic_0 != meta->configs[0].magic_0)
          continue;

      if (!meta->generation || be32toh(meta->generation) > raid->generation) {
          switch (meta->configs[0].type) {
          case ADP_T_RAID0:
            raid->magic_0 = meta->configs[0].magic_0;
            raid->type = AR_T_RAID0;
            raid->interleave = 1 << (meta->configs[0].stripe_shift >> 1);
            raid->width = be16toh(meta->configs[0].total_disks);
            break;
          
          case ADP_T_RAID1:
            raid->magic_0 = meta->configs[0].magic_0;
            raid->type = AR_T_RAID1;
            raid->width = be16toh(meta->configs[0].total_disks) / 2;
            break;

          default:
            device_printf(parent, "Adaptec unknown RAID type 0x%02x\n",
                        meta->configs[0].type);
            free(raidp[array], M_AR);
            raidp[array] = NULL;
            goto adaptec_out;
          }

          raid->format = AR_F_ADAPTEC_RAID;
          raid->generation = be32toh(meta->generation);
          raid->total_disks = be16toh(meta->configs[0].total_disks);
          raid->total_sectors = be32toh(meta->configs[0].sectors);
          raid->heads = 255;
          raid->sectors = 63;
          raid->cylinders = raid->total_sectors / (63 * 255);
          raid->offset_sectors = 0;
          raid->rebuild_lba = 0;
          raid->lun = array;
          strncpy(raid->name, meta->configs[0].name,
                min(sizeof(raid->name), sizeof(meta->configs[0].name)));

          /* clear out any old info */
          if (raid->generation) {
            for (disk = 0; disk < raid->total_disks; disk++) {
                raid->disks[disk].dev = NULL;
                raid->disks[disk].flags = 0;
            }
          }
      }
      if (be32toh(meta->generation) >= raid->generation) {
          struct ata_device *atadev = device_get_softc(parent);
          struct ata_channel *ch = device_get_softc(GRANDPARENT(dev));
          int disk_number = (ch->unit << !(ch->flags & ATA_NO_SLAVE)) +
                        ATA_DEV(atadev->unit);

          raid->disks[disk_number].dev = parent;
          raid->disks[disk_number].sectors = 
            be32toh(meta->configs[disk_number + 1].sectors);
          raid->disks[disk_number].flags =
            (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
          ars->raid[raid->volume] = raid;
          ars->disk_number[raid->volume] = disk_number;
          retval = 1;
      }
      break;
    }

adaptec_out:
    free(meta, M_AR);
    return retval;
}

/* Highpoint V2 RocketRAID Metadata */
static int
ata_raid_hptv2_read_meta(device_t dev, struct ar_softc **raidp)
{
    struct ata_raid_subdisk *ars = device_get_softc(dev);
    device_t parent = device_get_parent(dev);
    struct hptv2_raid_conf *meta;
    struct ar_softc *raid = NULL;
    int array, disk_number = 0, retval = 0;

    if (!(meta = (struct hptv2_raid_conf *)
        malloc(sizeof(struct hptv2_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
      return ENOMEM;

    if (ata_raid_rw(parent, HPTV2_LBA(parent),
                meta, sizeof(struct hptv2_raid_conf), ATA_R_READ)) {
      if (testing || bootverbose)
          device_printf(parent, "HighPoint (v2) read metadata failed\n");
      goto hptv2_out;
    }

    /* check if this is a HighPoint v2 RAID struct */
    if (meta->magic != HPTV2_MAGIC_OK && meta->magic != HPTV2_MAGIC_BAD) {
      if (testing || bootverbose)
          device_printf(parent, "HighPoint (v2) check1 failed\n");
      goto hptv2_out;
    }

    /* is this disk defined, or an old leftover/spare ? */
    if (!meta->magic_0) {
      if (testing || bootverbose)
          device_printf(parent, "HighPoint (v2) check2 failed\n");
      goto hptv2_out;
    }

    if (testing || bootverbose)
      ata_raid_hptv2_print_meta(meta);

    /* now convert HighPoint (v2) metadata into our generic form */
    for (array = 0; array < MAX_ARRAYS; array++) {
      if (!raidp[array]) {
          raidp[array] = 
            (struct ar_softc *)malloc(sizeof(struct ar_softc), M_AR,
                                M_NOWAIT | M_ZERO);
          if (!raidp[array]) {
            device_printf(parent, "failed to allocate metadata storage\n");
            goto hptv2_out;
          }
      }
      raid = raidp[array];
      if (raid->format && (raid->format != AR_F_HPTV2_RAID))
          continue;

      switch (meta->type) {
      case HPTV2_T_RAID0:
          if ((meta->order & (HPTV2_O_RAID0|HPTV2_O_OK)) ==
            (HPTV2_O_RAID0|HPTV2_O_OK))
            goto highpoint_raid1;
          if (meta->order & (HPTV2_O_RAID0 | HPTV2_O_RAID1))
            goto highpoint_raid01;
          if (raid->magic_0 && raid->magic_0 != meta->magic_0)
            continue;
          raid->magic_0 = meta->magic_0;
          raid->type = AR_T_RAID0;
          raid->interleave = 1 << meta->stripe_shift;
          disk_number = meta->disk_number;
          if (!(meta->order & HPTV2_O_OK))
            meta->magic = 0;        /* mark bad */
          break;

      case HPTV2_T_RAID1:
highpoint_raid1:
          if (raid->magic_0 && raid->magic_0 != meta->magic_0)
            continue;
          raid->magic_0 = meta->magic_0;
          raid->type = AR_T_RAID1;
          disk_number = (meta->disk_number > 0);
          break;

      case HPTV2_T_RAID01_RAID0:
highpoint_raid01:
          if (meta->order & HPTV2_O_RAID0) {
            if ((raid->magic_0 && raid->magic_0 != meta->magic_0) ||
                (raid->magic_1 && raid->magic_1 != meta->magic_1))
                continue;
            raid->magic_0 = meta->magic_0;
            raid->magic_1 = meta->magic_1;
            raid->type = AR_T_RAID01;
            raid->interleave = 1 << meta->stripe_shift;
            disk_number = meta->disk_number;
          }
          else {
            if (raid->magic_1 && raid->magic_1 != meta->magic_1)
                continue;
            raid->magic_1 = meta->magic_1;
            raid->type = AR_T_RAID01;
            raid->interleave = 1 << meta->stripe_shift;
            disk_number = meta->disk_number + meta->array_width;
            if (!(meta->order & HPTV2_O_RAID1))
                meta->magic = 0;    /* mark bad */
          }
          break;

      case HPTV2_T_SPAN:
          if (raid->magic_0 && raid->magic_0 != meta->magic_0)
            continue;
          raid->magic_0 = meta->magic_0;
          raid->type = AR_T_SPAN;
          disk_number = meta->disk_number;
          break;

      default:
          device_printf(parent, "Highpoint (v2) unknown RAID type 0x%02x\n",
                    meta->type);
          free(raidp[array], M_AR);
          raidp[array] = NULL;
          goto hptv2_out;
      }

      raid->format |= AR_F_HPTV2_RAID;
      raid->disks[disk_number].dev = parent;
      raid->disks[disk_number].flags = (AR_DF_PRESENT | AR_DF_ASSIGNED);
      raid->lun = array;
      strncpy(raid->name, meta->name_1,
            min(sizeof(raid->name), sizeof(meta->name_1)));
      if (meta->magic == HPTV2_MAGIC_OK) {
          raid->disks[disk_number].flags |= AR_DF_ONLINE;
          raid->width = meta->array_width;
          raid->total_sectors = meta->total_sectors;
          raid->heads = 255;
          raid->sectors = 63;
          raid->cylinders = raid->total_sectors / (63 * 255);
          raid->offset_sectors = HPTV2_LBA(parent) + 1;
          raid->rebuild_lba = meta->rebuild_lba;
          raid->disks[disk_number].sectors =
            raid->total_sectors / raid->width;
      }
      else
          raid->disks[disk_number].flags &= ~AR_DF_ONLINE;

      if ((raid->type & AR_T_RAID0) && (raid->total_disks < raid->width))
          raid->total_disks = raid->width;
      if (disk_number >= raid->total_disks)
          raid->total_disks = disk_number + 1;
      ars->raid[raid->volume] = raid;
      ars->disk_number[raid->volume] = disk_number;
      retval = 1;
      break;
    }

hptv2_out:
    free(meta, M_AR);
    return retval;
}

static int
ata_raid_hptv2_write_meta(struct ar_softc *rdp)
{
    struct hptv2_raid_conf *meta;
    struct timeval timestamp;
    int disk, error = 0;

    if (!(meta = (struct hptv2_raid_conf *)
        malloc(sizeof(struct hptv2_raid_conf), M_AR, M_NOWAIT | M_ZERO))) {
      printf("ar%d: failed to allocate metadata storage\n", rdp->lun);
      return ENOMEM;
    }

    microtime(&timestamp);
    rdp->magic_0 = timestamp.tv_sec + 2;
    rdp->magic_1 = timestamp.tv_sec;
   
    for (disk = 0; disk < rdp->total_disks; disk++) {
      if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
          (AR_DF_PRESENT | AR_DF_ONLINE))
          meta->magic = HPTV2_MAGIC_OK;
      if (rdp->disks[disk].flags & AR_DF_ASSIGNED) {
          meta->magic_0 = rdp->magic_0;
          if (strlen(rdp->name))
            strncpy(meta->name_1, rdp->name, sizeof(meta->name_1));
          else
            strcpy(meta->name_1, "FreeBSD");
      }
      meta->disk_number = disk;

      switch (rdp->type) {
      case AR_T_RAID0:
          meta->type = HPTV2_T_RAID0;
          strcpy(meta->name_2, "RAID 0");
          if (rdp->disks[disk].flags & AR_DF_ONLINE)
            meta->order = HPTV2_O_OK;
          break;

      case AR_T_RAID1:
          meta->type = HPTV2_T_RAID0;
          strcpy(meta->name_2, "RAID 1");
          meta->disk_number = (disk < rdp->width) ? disk : disk + 5;
          meta->order = HPTV2_O_RAID0 | HPTV2_O_OK;
          break;

      case AR_T_RAID01:
          meta->type = HPTV2_T_RAID01_RAID0;
          strcpy(meta->name_2, "RAID 0+1");
          if (rdp->disks[disk].flags & AR_DF_ONLINE) {
            if (disk < rdp->width) {
                meta->order = (HPTV2_O_RAID0 | HPTV2_O_RAID1);
                meta->magic_0 = rdp->magic_0 - 1;
            }
            else {
                meta->order = HPTV2_O_RAID1;
                meta->disk_number -= rdp->width;
            }
          }
          else
            meta->magic_0 = rdp->magic_0 - 1;
          meta->magic_1 = rdp->magic_1;
          break;

      case AR_T_SPAN:
          meta->type = HPTV2_T_SPAN;
          strcpy(meta->name_2, "SPAN");
          break;
      default:
          free(meta, M_AR);
          return ENODEV;
      }

      meta->array_width = rdp->width;
      meta->stripe_shift = (rdp->width > 1) ? (ffs(rdp->interleave)-1) : 0;
      meta->total_sectors = rdp->total_sectors;
      meta->rebuild_lba = rdp->rebuild_lba;
      if (testing || bootverbose)
          ata_raid_hptv2_print_meta(meta);
      if (rdp->disks[disk].dev) {
          if (ata_raid_rw(rdp->disks[disk].dev,
                      HPTV2_LBA(rdp->disks[disk].dev), meta,
                      sizeof(struct promise_raid_conf),
                      ATA_R_WRITE | ATA_R_DIRECT)) {
            device_printf(rdp->disks[disk].dev, "write metadata failed\n");
            error = EIO;
          }
      }
    }
    free(meta, M_AR);
    return error;
}

/* Highpoint V3 RocketRAID Metadata */
static int
ata_raid_hptv3_read_meta(device_t dev, struct ar_softc **raidp)
{
    struct ata_raid_subdisk *ars = device_get_softc(dev);
    device_t parent = device_get_parent(dev);
    struct hptv3_raid_conf *meta;
    struct ar_softc *raid = NULL;
    int array, disk_number, retval = 0;

    if (!(meta = (struct hptv3_raid_conf *)
        malloc(sizeof(struct hptv3_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
      return ENOMEM;

    if (ata_raid_rw(parent, HPTV3_LBA(parent),
                meta, sizeof(struct hptv3_raid_conf), ATA_R_READ)) {
      if (testing || bootverbose)
          device_printf(parent, "HighPoint (v3) read metadata failed\n");
      goto hptv3_out;
    }

    /* check if this is a HighPoint v3 RAID struct */
    if (meta->magic != HPTV3_MAGIC) {
      if (testing || bootverbose)
          device_printf(parent, "HighPoint (v3) check1 failed\n");
      goto hptv3_out;
    }

    /* check if there are any config_entries */
    if (meta->config_entries < 1) {
      if (testing || bootverbose)
          device_printf(parent, "HighPoint (v3) check2 failed\n");
      goto hptv3_out;
    }

    if (testing || bootverbose)
      ata_raid_hptv3_print_meta(meta);

    /* now convert HighPoint (v3) metadata into our generic form */
    for (array = 0; array < MAX_ARRAYS; array++) {
      if (!raidp[array]) {
          raidp[array] = 
            (struct ar_softc *)malloc(sizeof(struct ar_softc), M_AR,
                                M_NOWAIT | M_ZERO);
          if (!raidp[array]) {
            device_printf(parent, "failed to allocate metadata storage\n");
            goto hptv3_out;
          }
      }
      raid = raidp[array];
      if (raid->format && (raid->format != AR_F_HPTV3_RAID))
          continue;

      if ((raid->format & AR_F_HPTV3_RAID) && raid->magic_0 != meta->magic_0)
          continue;
      
      switch (meta->configs[0].type) {
      case HPTV3_T_RAID0:
          raid->type = AR_T_RAID0;
          raid->width = meta->configs[0].total_disks;
          disk_number = meta->configs[0].disk_number;
          break;

      case HPTV3_T_RAID1:
          raid->type = AR_T_RAID1;
          raid->width = meta->configs[0].total_disks / 2;
          disk_number = meta->configs[0].disk_number;
          break;

      case HPTV3_T_RAID5:
          raid->type = AR_T_RAID5;
          raid->width = meta->configs[0].total_disks;
          disk_number = meta->configs[0].disk_number;
          break;

      case HPTV3_T_SPAN:
          raid->type = AR_T_SPAN;
          raid->width = meta->configs[0].total_disks;
          disk_number = meta->configs[0].disk_number;
          break;

      default:
          device_printf(parent, "Highpoint (v3) unknown RAID type 0x%02x\n",
                    meta->configs[0].type);
          free(raidp[array], M_AR);
          raidp[array] = NULL;
          goto hptv3_out;
      }
      if (meta->config_entries == 2) {
          switch (meta->configs[1].type) {
          case HPTV3_T_RAID1:
            if (raid->type == AR_T_RAID0) {
                raid->type = AR_T_RAID01;
                disk_number = meta->configs[1].disk_number +
                          (meta->configs[0].disk_number << 1);
                break;
            }
          default:
            device_printf(parent, "Highpoint (v3) unknown level 2 0x%02x\n",
                        meta->configs[1].type);
            free(raidp[array], M_AR);
            raidp[array] = NULL;
            goto hptv3_out;
          }
      }

      raid->magic_0 = meta->magic_0;
      raid->format = AR_F_HPTV3_RAID;
      raid->generation = meta->timestamp;
      raid->interleave = 1 << meta->configs[0].stripe_shift;
      raid->total_disks = meta->configs[0].total_disks +
          meta->configs[1].total_disks;
      raid->total_sectors = meta->configs[0].total_sectors +
          ((u_int64_t)meta->configs_high[0].total_sectors << 32);
      raid->heads = 255;
      raid->sectors = 63;
      raid->cylinders = raid->total_sectors / (63 * 255);
      raid->offset_sectors = 0;
      raid->rebuild_lba = meta->configs[0].rebuild_lba +
          ((u_int64_t)meta->configs_high[0].rebuild_lba << 32);
      raid->lun = array;
      strncpy(raid->name, meta->name,
            min(sizeof(raid->name), sizeof(meta->name)));
      raid->disks[disk_number].sectors = raid->total_sectors /
          (raid->type == AR_T_RAID5 ? raid->width - 1 : raid->width);
      raid->disks[disk_number].dev = parent;
      raid->disks[disk_number].flags = 
          (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
      ars->raid[raid->volume] = raid;
      ars->disk_number[raid->volume] = disk_number;
      retval = 1;
      break;
    }

hptv3_out:
    free(meta, M_AR);
    return retval;
}

/* Intel MatrixRAID Metadata */
static int
ata_raid_intel_read_meta(device_t dev, struct ar_softc **raidp)
{
    struct ata_raid_subdisk *ars = device_get_softc(dev);
    device_t parent = device_get_parent(dev);
    struct intel_raid_conf *meta;
    struct intel_raid_mapping *map;
    struct ar_softc *raid = NULL;
    u_int32_t checksum, *ptr;
    int array, count, disk, volume = 1, retval = 0;
    char *tmp;

    if (!(meta = (struct intel_raid_conf *)
        malloc(1536, M_AR, M_NOWAIT | M_ZERO)))
      return ENOMEM;

    if (ata_raid_rw(parent, INTEL_LBA(parent), meta, 1024, ATA_R_READ)) {
      if (testing || bootverbose)
          device_printf(parent, "Intel read metadata failed\n");
      goto intel_out;
    }
    tmp = (char *)meta;
    bcopy(tmp, tmp+1024, 512);
    bcopy(tmp+512, tmp, 1024);
    bzero(tmp+1024, 512);

    /* check if this is a Intel RAID struct */
    if (strncmp(meta->intel_id, INTEL_MAGIC, strlen(INTEL_MAGIC))) {
      if (testing || bootverbose)
          device_printf(parent, "Intel check1 failed\n");
      goto intel_out;
    }

    for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
       count < (meta->config_size / sizeof(u_int32_t)); count++) {
      checksum += *ptr++;
    }
    checksum -= meta->checksum;
    if (checksum != meta->checksum) {  
      if (testing || bootverbose)
          device_printf(parent, "Intel check2 failed\n");          
      goto intel_out;
    }

    if (testing || bootverbose)
      ata_raid_intel_print_meta(meta);

    map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];

    /* now convert Intel metadata into our generic form */
    for (array = 0; array < MAX_ARRAYS; array++) {
      if (!raidp[array]) {
          raidp[array] = 
            (struct ar_softc *)malloc(sizeof(struct ar_softc), M_AR,
                                M_NOWAIT | M_ZERO);
          if (!raidp[array]) {
            device_printf(parent, "failed to allocate metadata storage\n");
            goto intel_out;
          }
      }
      raid = raidp[array];
      if (raid->format && (raid->format != AR_F_INTEL_RAID))
          continue;

      if ((raid->format & AR_F_INTEL_RAID) &&
          (raid->magic_0 != meta->config_id))
          continue;

      /*
       * update our knowledge about the array config based on generation
       * NOTE: there can be multiple volumes on a disk set
       */
      if (!meta->generation || meta->generation > raid->generation) {
          switch (map->type) {
          case INTEL_T_RAID0:
            raid->type = AR_T_RAID0;
            raid->width = map->total_disks;
            break;

          case INTEL_T_RAID1:
            if (map->total_disks == 4)
                raid->type = AR_T_RAID01;
            else
                raid->type = AR_T_RAID1;
            raid->width = map->total_disks / 2;
            break;

          case INTEL_T_RAID5:
            raid->type = AR_T_RAID5;
            raid->width = map->total_disks;
            break;

          default:
            device_printf(parent, "Intel unknown RAID type 0x%02x\n",
                        map->type);
            free(raidp[array], M_AR);
            raidp[array] = NULL;
            goto intel_out;
          }

          switch (map->status) {
          case INTEL_S_READY:
            raid->status = AR_S_READY;
            break;
          case INTEL_S_DEGRADED:
            raid->status |= AR_S_DEGRADED;
            break;
          case INTEL_S_DISABLED:
          case INTEL_S_FAILURE:
            raid->status = 0;
          }

          raid->magic_0 = meta->config_id;
          raid->format = AR_F_INTEL_RAID;
          raid->generation = meta->generation;
          raid->interleave = map->stripe_sectors;
          raid->total_disks = map->total_disks;
          raid->total_sectors = map->total_sectors;
          raid->heads = 255;
          raid->sectors = 63;
          raid->cylinders = raid->total_sectors / (63 * 255);
          raid->offset_sectors = map->offset;         
          raid->rebuild_lba = 0;
          raid->lun = array;
          raid->volume = volume - 1;
          strncpy(raid->name, map->name,
                min(sizeof(raid->name), sizeof(map->name)));

          /* clear out any old info */
          for (disk = 0; disk < raid->total_disks; disk++) {
            raid->disks[disk].dev = NULL;
            bcopy(meta->disk[map->disk_idx[disk]].serial,
                  raid->disks[disk].serial,
                  sizeof(raid->disks[disk].serial));
            raid->disks[disk].sectors =
                meta->disk[map->disk_idx[disk]].sectors;
            raid->disks[disk].flags = 0;
            if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ONLINE)
                raid->disks[disk].flags |= AR_DF_ONLINE;
            if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_ASSIGNED)
                raid->disks[disk].flags |= AR_DF_ASSIGNED;
            if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_SPARE) {
                raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
                raid->disks[disk].flags |= AR_DF_SPARE;
            }
            if (meta->disk[map->disk_idx[disk]].flags & INTEL_F_DOWN)
                raid->disks[disk].flags &= ~AR_DF_ONLINE;
          }
      }
      if (meta->generation >= raid->generation) {
          for (disk = 0; disk < raid->total_disks; disk++) {
            struct ata_device *atadev = device_get_softc(parent);

            if (!strncmp(raid->disks[disk].serial, atadev->param.serial,
                sizeof(raid->disks[disk].serial))) {
                raid->disks[disk].dev = parent;
                raid->disks[disk].flags |= (AR_DF_PRESENT | AR_DF_ONLINE);
                ars->raid[raid->volume] = raid;
                ars->disk_number[raid->volume] = disk;
                retval = 1;
            }
          }
      }
      else
          goto intel_out;

      if (retval) {
          if (volume < meta->total_volumes) {
            map = (struct intel_raid_mapping *)
                  &map->disk_idx[map->total_disks];
            volume++;
            retval = 0;
            continue;
          }
          break;
      }
      else {
          free(raidp[array], M_AR);
          raidp[array] = NULL;
          if (volume == 2)
            retval = 1;
      }
    }

intel_out:
    free(meta, M_AR);
    return retval;
}

static int
ata_raid_intel_write_meta(struct ar_softc *rdp)
{
    struct intel_raid_conf *meta;
    struct intel_raid_mapping *map;
    struct timeval timestamp;
    u_int32_t checksum, *ptr;
    int count, disk, error = 0;
    char *tmp;

    if (!(meta = (struct intel_raid_conf *)
        malloc(1536, M_AR, M_NOWAIT | M_ZERO))) {
      printf("ar%d: failed to allocate metadata storage\n", rdp->lun);
      return ENOMEM;
    }

    rdp->generation++;
    microtime(&timestamp);

    bcopy(INTEL_MAGIC, meta->intel_id, sizeof(meta->intel_id));
    bcopy(INTEL_VERSION_1100, meta->version, sizeof(meta->version));
    meta->config_id = timestamp.tv_sec;
    meta->generation = rdp->generation;
    meta->total_disks = rdp->total_disks;
    meta->total_volumes = 1;                                    /* XXX SOS */
    for (disk = 0; disk < rdp->total_disks; disk++) {
      if (rdp->disks[disk].dev) {
          struct ata_channel *ch =
            device_get_softc(device_get_parent(rdp->disks[disk].dev));
          struct ata_device *atadev =
            device_get_softc(rdp->disks[disk].dev);

          bcopy(atadev->param.serial, meta->disk[disk].serial,
              sizeof(rdp->disks[disk].serial));
          meta->disk[disk].sectors = rdp->disks[disk].sectors;
          meta->disk[disk].id = (ch->unit << 16) | ATA_DEV(atadev->unit);
      }
      else
          meta->disk[disk].sectors = rdp->total_sectors / rdp->width;
      meta->disk[disk].flags = 0;
      if (rdp->disks[disk].flags & AR_DF_SPARE)
          meta->disk[disk].flags  |= INTEL_F_SPARE;
      else {
          if (rdp->disks[disk].flags & AR_DF_ONLINE)
            meta->disk[disk].flags |= INTEL_F_ONLINE;
          else
            meta->disk[disk].flags |= INTEL_F_DOWN;
          if (rdp->disks[disk].flags & AR_DF_ASSIGNED)
            meta->disk[disk].flags  |= INTEL_F_ASSIGNED;
      }
    }
    map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];

    bcopy(rdp->name, map->name, sizeof(rdp->name));
    map->total_sectors = rdp->total_sectors;
    map->state = 12;                                            /* XXX SOS */
    map->offset = rdp->offset_sectors;
    map->stripe_count = rdp->total_sectors / (rdp->interleave*rdp->total_disks);
    map->stripe_sectors =  rdp->interleave;
    map->disk_sectors = rdp->total_sectors / rdp->width;
    map->status = INTEL_S_READY;                                /* XXX SOS */
    switch (rdp->type) {
    case AR_T_RAID0:
      map->type = INTEL_T_RAID0;
      break;
    case AR_T_RAID1:
      map->type = INTEL_T_RAID1;
      break;
    case AR_T_RAID01:
      map->type = INTEL_T_RAID1;
      break;
    case AR_T_RAID5:
      map->type = INTEL_T_RAID5;
      break;
    default:
      free(meta, M_AR);
      return ENODEV;
    }
    map->total_disks = rdp->total_disks;
    map->magic[0] = 0x02;
    map->magic[1] = 0xff;
    map->magic[2] = 0x01;
    for (disk = 0; disk < rdp->total_disks; disk++)
      map->disk_idx[disk] = disk;

    meta->config_size = (char *)&map->disk_idx[disk] - (char *)meta;
    for (checksum = 0, ptr = (u_int32_t *)meta, count = 0;
       count < (meta->config_size / sizeof(u_int32_t)); count++) {
      checksum += *ptr++;
    }
    meta->checksum = checksum;

    if (testing || bootverbose)
      ata_raid_intel_print_meta(meta);

    tmp = (char *)meta;
    bcopy(tmp, tmp+1024, 512);
    bcopy(tmp+512, tmp, 1024);
    bzero(tmp+1024, 512);

    for (disk = 0; disk < rdp->total_disks; disk++) {
      if (rdp->disks[disk].dev) {
          if (ata_raid_rw(rdp->disks[disk].dev,
                      INTEL_LBA(rdp->disks[disk].dev),
                      meta, 1024, ATA_R_WRITE | ATA_R_DIRECT)) {
            device_printf(rdp->disks[disk].dev, "write metadata failed\n");
            error = EIO;
          }
      }
    }
    free(meta, M_AR);
    return error;
}


/* Integrated Technology Express Metadata */
static int
ata_raid_ite_read_meta(device_t dev, struct ar_softc **raidp)
{
    struct ata_raid_subdisk *ars = device_get_softc(dev);
    device_t parent = device_get_parent(dev);
    struct ite_raid_conf *meta;
    struct ar_softc *raid = NULL;
    int array, disk_number, count, retval = 0;
    u_int16_t *ptr;

    if (!(meta = (struct ite_raid_conf *)
        malloc(sizeof(struct ite_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
      return ENOMEM;

    if (ata_raid_rw(parent, ITE_LBA(parent),
                meta, sizeof(struct ite_raid_conf), ATA_R_READ)) {
      if (testing || bootverbose)
          device_printf(parent, "ITE read metadata failed\n");
      goto ite_out;
    }

    /* check if this is a ITE RAID struct */
    for (ptr = (u_int16_t *)meta->ite_id, count = 0;
       count < sizeof(meta->ite_id)/sizeof(uint16_t); count++)
      ptr[count] = be16toh(ptr[count]);

    if (strncmp(meta->ite_id, ITE_MAGIC, strlen(ITE_MAGIC))) {
      if (testing || bootverbose)
          device_printf(parent, "ITE check1 failed\n");
      goto ite_out;
    }

    if (testing || bootverbose)
      ata_raid_ite_print_meta(meta);

    /* now convert ITE metadata into our generic form */
    for (array = 0; array < MAX_ARRAYS; array++) {
      if ((raid = raidp[array])) {
          if (raid->format != AR_F_ITE_RAID)
            continue;
          if (raid->magic_0 != *((u_int64_t *)meta->timestamp_0))
            continue;
      }

      /* if we dont have a disks timestamp the RAID is invalidated */
      if (*((u_int64_t *)meta->timestamp_1) == 0)
          goto ite_out;

      if (!raid) {
          raidp[array] = (struct ar_softc *)malloc(sizeof(struct ar_softc),
                                         M_AR, M_NOWAIT | M_ZERO);
          if (!(raid = raidp[array])) {
            device_printf(parent, "failed to allocate metadata storage\n");
            goto ite_out;
          }
      }

      switch (meta->type) {
      case ITE_T_RAID0:
          raid->type = AR_T_RAID0;
          raid->width = meta->array_width;
          raid->total_disks = meta->array_width;
          disk_number = meta->disk_number;
          break;

      case ITE_T_RAID1:
          raid->type = AR_T_RAID1;
          raid->width = 1;
          raid->total_disks = 2;
          disk_number = meta->disk_number;
          break;

      case ITE_T_RAID01:
          raid->type = AR_T_RAID01;
          raid->width = meta->array_width;
          raid->total_disks = 4;
          disk_number = ((meta->disk_number & 0x02) >> 1) |
                    ((meta->disk_number & 0x01) << 1);
          break;

      case ITE_T_SPAN:
          raid->type = AR_T_SPAN;
          raid->width = 1;
          raid->total_disks = meta->array_width;
          disk_number = meta->disk_number;
          break;

      default:
          device_printf(parent, "ITE unknown RAID type 0x%02x\n", meta->type);
          free(raidp[array], M_AR);
          raidp[array] = NULL;
          goto ite_out;
      }

      raid->magic_0 = *((u_int64_t *)meta->timestamp_0);
      raid->format = AR_F_ITE_RAID;
      raid->generation = 0;
      raid->interleave = meta->stripe_sectors;
      raid->total_sectors = meta->total_sectors;
      raid->heads = 255;
      raid->sectors = 63;
      raid->cylinders = raid->total_sectors / (63 * 255);
      raid->offset_sectors = 0;
      raid->rebuild_lba = 0;
      raid->lun = array;

      raid->disks[disk_number].dev = parent;
      raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
      raid->disks[disk_number].flags = 
          (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
      ars->raid[raid->volume] = raid;
      ars->disk_number[raid->volume] = disk_number;
      retval = 1;
      break;
    }
ite_out:
    free(meta, M_AR);
    return retval;
}

/* JMicron Technology Corp Metadata */
static int
ata_raid_jmicron_read_meta(device_t dev, struct ar_softc **raidp)
{
    struct ata_raid_subdisk *ars = device_get_softc(dev);
    device_t parent = device_get_parent(dev);
    struct jmicron_raid_conf *meta;
    struct ar_softc *raid = NULL;
    u_int16_t checksum, *ptr;
    u_int64_t disk_size;
    int count, array, disk, total_disks, retval = 0;

    if (!(meta = (struct jmicron_raid_conf *)
        malloc(sizeof(struct jmicron_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
      return ENOMEM;

    if (ata_raid_rw(parent, JMICRON_LBA(parent),
                meta, sizeof(struct jmicron_raid_conf), ATA_R_READ)) {
      if (testing || bootverbose)
          device_printf(parent,
                    "JMicron read metadata failed\n");
    }

    /* check for JMicron signature */
    if (strncmp(meta->signature, JMICRON_MAGIC, 2)) {
      if (testing || bootverbose)
          device_printf(parent, "JMicron check1 failed\n");
      goto jmicron_out;
    }

    /* calculate checksum and compare for valid */
    for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
      checksum += *ptr++;
    if (checksum) {  
      if (testing || bootverbose)
          device_printf(parent, "JMicron check2 failed\n");
      goto jmicron_out;
    }

    if (testing || bootverbose)
      ata_raid_jmicron_print_meta(meta);

    /* now convert JMicron meta into our generic form */
    for (array = 0; array < MAX_ARRAYS; array++) {
jmicron_next:
      if (!raidp[array]) {
          raidp[array] = 
            (struct ar_softc *)malloc(sizeof(struct ar_softc), M_AR,
                                M_NOWAIT | M_ZERO);
          if (!raidp[array]) {
            device_printf(parent, "failed to allocate metadata storage\n");
            goto jmicron_out;
          }
      }
      raid = raidp[array];
      if (raid->format && (raid->format != AR_F_JMICRON_RAID))
          continue;

      for (total_disks = 0, disk = 0; disk < JM_MAX_DISKS; disk++) {
          if (meta->disks[disk]) {
            if (raid->format == AR_F_JMICRON_RAID) {
                if (bcmp(&meta->disks[disk], 
                  raid->disks[disk].serial, sizeof(u_int32_t))) {
                  array++;
                  goto jmicron_next;
                }
            }
            else 
                bcopy(&meta->disks[disk],
                    raid->disks[disk].serial, sizeof(u_int32_t));
            total_disks++;
          }
      }
      /* handle spares XXX SOS */

      switch (meta->type) {
      case JM_T_RAID0:
          raid->type = AR_T_RAID0;
          raid->width = total_disks;
          break;

      case JM_T_RAID1:
          raid->type = AR_T_RAID1;
          raid->width = 1;
          break;

      case JM_T_RAID01:
          raid->type = AR_T_RAID01;
          raid->width = total_disks / 2;
          break;

      case JM_T_RAID5:
          raid->type = AR_T_RAID5;
          raid->width = total_disks;
          break;

      case JM_T_JBOD:
          raid->type = AR_T_SPAN;
          raid->width = 1;
          break;

      default:
          device_printf(parent,
                    "JMicron unknown RAID type 0x%02x\n", meta->type);
          free(raidp[array], M_AR);
          raidp[array] = NULL;
          goto jmicron_out;
      }
      disk_size = (meta->disk_sectors_high << 16) + meta->disk_sectors_low;
      raid->format = AR_F_JMICRON_RAID;
      strncpy(raid->name, meta->name, sizeof(meta->name));
      raid->generation = 0;
      raid->interleave = 2 << meta->stripe_shift;
      raid->total_disks = total_disks;
      raid->total_sectors = disk_size * (raid->width-(raid->type==AR_RAID5));
      raid->heads = 255;
      raid->sectors = 63;
      raid->cylinders = raid->total_sectors / (63 * 255);
      raid->offset_sectors = meta->offset * 16;
      raid->rebuild_lba = 0;
      raid->lun = array;

      for (disk = 0; disk < raid->total_disks; disk++) {
          if (meta->disks[disk] == meta->disk_id) {
            raid->disks[disk].dev = parent;
            raid->disks[disk].sectors = disk_size;
            raid->disks[disk].flags =
                (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
            ars->raid[raid->volume] = raid;
            ars->disk_number[raid->volume] = disk;
            retval = 1;
            break;
          }
      }
      break;
    }
jmicron_out:
    free(meta, M_AR);
    return retval;
}

static int
ata_raid_jmicron_write_meta(struct ar_softc *rdp)
{
    struct jmicron_raid_conf *meta;
    u_int64_t disk_sectors;
    int disk, error = 0;

    if (!(meta = (struct jmicron_raid_conf *)
        malloc(sizeof(struct jmicron_raid_conf), M_AR, M_NOWAIT | M_ZERO))) {
      printf("ar%d: failed to allocate metadata storage\n", rdp->lun);
      return ENOMEM;
    }

    rdp->generation++;
    switch (rdp->type) {
    case AR_T_JBOD:
      meta->type = JM_T_JBOD;
      break;

    case AR_T_RAID0:
      meta->type = JM_T_RAID0;
      break;

    case AR_T_RAID1:
      meta->type = JM_T_RAID1;
      break;

    case AR_T_RAID5:
      meta->type = JM_T_RAID5;
      break;

    case AR_T_RAID01:
      meta->type = JM_T_RAID01;
      break;

    default:
      free(meta, M_AR);
      return ENODEV;
    }
    bcopy(JMICRON_MAGIC, meta->signature, sizeof(JMICRON_MAGIC));
    meta->version = JMICRON_VERSION;
    meta->offset = rdp->offset_sectors / 16;
    disk_sectors = rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
    meta->disk_sectors_low = disk_sectors & 0xffff;
    meta->disk_sectors_high = disk_sectors >> 16;
    strncpy(meta->name, rdp->name, sizeof(meta->name));
    meta->stripe_shift = ffs(rdp->interleave) - 2;

    for (disk = 0; disk < rdp->total_disks; disk++) {
      if (rdp->disks[disk].serial[0])
          bcopy(rdp->disks[disk].serial,&meta->disks[disk],sizeof(u_int32_t));
      else
          meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;
    }

    for (disk = 0; disk < rdp->total_disks; disk++) {
      if (rdp->disks[disk].dev) {
          u_int16_t checksum = 0, *ptr;
          int count;

          meta->disk_id = meta->disks[disk];
          meta->checksum = 0;
          for (ptr = (u_int16_t *)meta, count = 0; count < 64; count++)
            checksum += *ptr++;
          meta->checksum -= checksum;

          if (testing || bootverbose)
            ata_raid_jmicron_print_meta(meta);

          if (ata_raid_rw(rdp->disks[disk].dev,
                      JMICRON_LBA(rdp->disks[disk].dev),
                      meta, sizeof(struct jmicron_raid_conf),
                      ATA_R_WRITE | ATA_R_DIRECT)) {
            device_printf(rdp->disks[disk].dev, "write metadata failed\n");
            error = EIO;
          }
      }
    }
    /* handle spares XXX SOS */

    free(meta, M_AR);
    return error;
}

/* LSILogic V2 MegaRAID Metadata */
static int
ata_raid_lsiv2_read_meta(device_t dev, struct ar_softc **raidp)
{
    struct ata_raid_subdisk *ars = device_get_softc(dev);
    device_t parent = device_get_parent(dev);
    struct lsiv2_raid_conf *meta;
    struct ar_softc *raid = NULL;
    int array, retval = 0;

    if (!(meta = (struct lsiv2_raid_conf *)
        malloc(sizeof(struct lsiv2_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
      return ENOMEM;

    if (ata_raid_rw(parent, LSIV2_LBA(parent),
                meta, sizeof(struct lsiv2_raid_conf), ATA_R_READ)) {
      if (testing || bootverbose)
          device_printf(parent, "LSI (v2) read metadata failed\n");
      goto lsiv2_out;
    }

    /* check if this is a LSI RAID struct */
    if (strncmp(meta->lsi_id, LSIV2_MAGIC, strlen(LSIV2_MAGIC))) {
      if (testing || bootverbose)
          device_printf(parent, "LSI (v2) check1 failed\n");
      goto lsiv2_out;
    }

    if (testing || bootverbose)
      ata_raid_lsiv2_print_meta(meta);

    /* now convert LSI (v2) config meta into our generic form */
    for (array = 0; array < MAX_ARRAYS; array++) {
      int raid_entry, conf_entry;

      if (!raidp[array + meta->raid_number]) {
          raidp[array + meta->raid_number] = 
            (struct ar_softc *)malloc(sizeof(struct ar_softc), M_AR,
                                M_NOWAIT | M_ZERO);
          if (!raidp[array + meta->raid_number]) {
            device_printf(parent, "failed to allocate metadata storage\n");
            goto lsiv2_out;
          }
      }
      raid = raidp[array + meta->raid_number];
      if (raid->format && (raid->format != AR_F_LSIV2_RAID))
          continue;

      if (raid->magic_0 && 
          ((raid->magic_0 != meta->timestamp) ||
           (raid->magic_1 != meta->raid_number)))
          continue;

      array += meta->raid_number;

      raid_entry = meta->raid_number;
      conf_entry = (meta->configs[raid_entry].raid.config_offset >> 4) +
                 meta->disk_number - 1;

      switch (meta->configs[raid_entry].raid.type) {
      case LSIV2_T_RAID0:
          raid->magic_0 = meta->timestamp;
          raid->magic_1 = meta->raid_number;
          raid->type = AR_T_RAID0;
          raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
          raid->width = meta->configs[raid_entry].raid.array_width; 
          break;

      case LSIV2_T_RAID1:
          raid->magic_0 = meta->timestamp;
          raid->magic_1 = meta->raid_number;
          raid->type = AR_T_RAID1;
          raid->width = meta->configs[raid_entry].raid.array_width; 
          break;
          
      case LSIV2_T_RAID0 | LSIV2_T_RAID1:
          raid->magic_0 = meta->timestamp;
          raid->magic_1 = meta->raid_number;
          raid->type = AR_T_RAID01;
          raid->interleave = meta->configs[raid_entry].raid.stripe_sectors;
          raid->width = meta->configs[raid_entry].raid.array_width; 
          break;

      default:
          device_printf(parent, "LSI v2 unknown RAID type 0x%02x\n",
                    meta->configs[raid_entry].raid.type);
          free(raidp[array], M_AR);
          raidp[array] = NULL;
          goto lsiv2_out;
      }

      raid->format = AR_F_LSIV2_RAID;
      raid->generation = 0;
      raid->total_disks = meta->configs[raid_entry].raid.disk_count;
      raid->total_sectors = meta->configs[raid_entry].raid.total_sectors;
      raid->heads = 255;
      raid->sectors = 63;
      raid->cylinders = raid->total_sectors / (63 * 255);
      raid->offset_sectors = 0;
      raid->rebuild_lba = 0;
      raid->lun = array;

      if (meta->configs[conf_entry].disk.device != LSIV2_D_NONE) {
          raid->disks[meta->disk_number].dev = parent;
          raid->disks[meta->disk_number].sectors = 
            meta->configs[conf_entry].disk.disk_sectors;
          raid->disks[meta->disk_number].flags = 
            (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
          ars->raid[raid->volume] = raid;
          ars->disk_number[raid->volume] = meta->disk_number;
          retval = 1;
      }
      else
          raid->disks[meta->disk_number].flags &= ~AR_DF_ONLINE;

      break;
    }

lsiv2_out:
    free(meta, M_AR);
    return retval;
}

/* LSILogic V3 MegaRAID Metadata */
static int
ata_raid_lsiv3_read_meta(device_t dev, struct ar_softc **raidp)
{
    struct ata_raid_subdisk *ars = device_get_softc(dev);
    device_t parent = device_get_parent(dev);
    struct lsiv3_raid_conf *meta;
    struct ar_softc *raid = NULL;
    u_int8_t checksum, *ptr;
    int array, entry, count, disk_number, retval = 0;

    if (!(meta = (struct lsiv3_raid_conf *)
        malloc(sizeof(struct lsiv3_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
      return ENOMEM;

    if (ata_raid_rw(parent, LSIV3_LBA(parent),
                meta, sizeof(struct lsiv3_raid_conf), ATA_R_READ)) {
      if (testing || bootverbose)
          device_printf(parent, "LSI (v3) read metadata failed\n");
      goto lsiv3_out;
    }

    /* check if this is a LSI RAID struct */
    if (strncmp(meta->lsi_id, LSIV3_MAGIC, strlen(LSIV3_MAGIC))) {
      if (testing || bootverbose)
          device_printf(parent, "LSI (v3) check1 failed\n");
      goto lsiv3_out;
    }

    /* check if the checksum is OK */
    for (checksum = 0, ptr = meta->lsi_id, count = 0; count < 512; count++)
      checksum += *ptr++;
    if (checksum) {  
      if (testing || bootverbose)
          device_printf(parent, "LSI (v3) check2 failed\n");
      goto lsiv3_out;
    }

    if (testing || bootverbose)
      ata_raid_lsiv3_print_meta(meta);

    /* now convert LSI (v3) config meta into our generic form */
    for (array = 0, entry = 0; array < MAX_ARRAYS && entry < 8;) {
      if (!raidp[array]) {
          raidp[array] = 
            (struct ar_softc *)malloc(sizeof(struct ar_softc), M_AR,
                                M_NOWAIT | M_ZERO);
          if (!raidp[array]) {
            device_printf(parent, "failed to allocate metadata storage\n");
            goto lsiv3_out;
          }
      }
      raid = raidp[array];
      if (raid->format && (raid->format != AR_F_LSIV3_RAID)) {
          array++;
          continue;
      }

      if ((raid->format == AR_F_LSIV3_RAID) &&
          (raid->magic_0 != meta->timestamp)) {
          array++;
          continue;
      }

      switch (meta->raid[entry].total_disks) {
      case 0:
          entry++;
          continue;
      case 1:
          if (meta->raid[entry].device == meta->device) {
            disk_number = 0;
            break;
          }
          if (raid->format)
            array++;
          entry++;
          continue;
      case 2:
          disk_number = (meta->device & (LSIV3_D_DEVICE|LSIV3_D_CHANNEL))?1:0;
          break;
      default:
          device_printf(parent, "lsiv3 > 2 disk support untested!!\n");
          disk_number = (meta->device & LSIV3_D_DEVICE ? 1 : 0) +
                    (meta->device & LSIV3_D_CHANNEL ? 2 : 0);
          break;
      }

      switch (meta->raid[entry].type) {
      case LSIV3_T_RAID0:
          raid->type = AR_T_RAID0;
          raid->width = meta->raid[entry].total_disks;
          break;

      case LSIV3_T_RAID1:
          raid->type = AR_T_RAID1;
          raid->width = meta->raid[entry].array_width;
          break;

      default:
          device_printf(parent, "LSI v3 unknown RAID type 0x%02x\n",
                    meta->raid[entry].type);
          free(raidp[array], M_AR);
          raidp[array] = NULL;
          entry++;
          continue;
      }

      raid->magic_0 = meta->timestamp;
      raid->format = AR_F_LSIV3_RAID;
      raid->generation = 0;
      raid->interleave = meta->raid[entry].stripe_pages * 8;
      raid->total_disks = meta->raid[entry].total_disks;
      raid->total_sectors = raid->width * meta->raid[entry].sectors;
      raid->heads = 255;
      raid->sectors = 63;
      raid->cylinders = raid->total_sectors / (63 * 255);
      raid->offset_sectors = meta->raid[entry].offset;
      raid->rebuild_lba = 0;
      raid->lun = array;

      raid->disks[disk_number].dev = parent;
      raid->disks[disk_number].sectors = raid->total_sectors / raid->width;
      raid->disks[disk_number].flags = 
          (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
      ars->raid[raid->volume] = raid;
      ars->disk_number[raid->volume] = disk_number;
      retval = 1;
      entry++;
      array++;
    }

lsiv3_out:
    free(meta, M_AR);
    return retval;
}

/* nVidia MediaShield Metadata */
static int
ata_raid_nvidia_read_meta(device_t dev, struct ar_softc **raidp)
{
    struct ata_raid_subdisk *ars = device_get_softc(dev);
    device_t parent = device_get_parent(dev);
    struct nvidia_raid_conf *meta;
    struct ar_softc *raid = NULL;
    u_int32_t checksum, *ptr;
    int array, count, retval = 0;

    if (!(meta = (struct nvidia_raid_conf *)
        malloc(sizeof(struct nvidia_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
      return ENOMEM;

    if (ata_raid_rw(parent, NVIDIA_LBA(parent),
                meta, sizeof(struct nvidia_raid_conf), ATA_R_READ)) {
      if (testing || bootverbose)
          device_printf(parent, "nVidia read metadata failed\n");
      goto nvidia_out;
    }

    /* check if this is a nVidia RAID struct */
    if (strncmp(meta->nvidia_id, NV_MAGIC, strlen(NV_MAGIC))) {
      if (testing || bootverbose)
          device_printf(parent, "nVidia check1 failed\n");
      goto nvidia_out;
    }

    /* check if the checksum is OK */
    for (checksum = 0, ptr = (u_int32_t*)meta, count = 0; 
       count < meta->config_size; count++)
      checksum += *ptr++;
    if (checksum) {  
      if (testing || bootverbose)
          device_printf(parent, "nVidia check2 failed\n");
      goto nvidia_out;
    }

    if (testing || bootverbose)
      ata_raid_nvidia_print_meta(meta);

    /* now convert nVidia meta into our generic form */
    for (array = 0; array < MAX_ARRAYS; array++) {
      if (!raidp[array]) {
          raidp[array] =
            (struct ar_softc *)malloc(sizeof(struct ar_softc), M_AR,
                                M_NOWAIT | M_ZERO);
          if (!raidp[array]) {
            device_printf(parent, "failed to allocate metadata storage\n");
            goto nvidia_out;
          }
      }
      raid = raidp[array];
      if (raid->format && (raid->format != AR_F_NVIDIA_RAID))
          continue;

      if (raid->format == AR_F_NVIDIA_RAID &&
          ((raid->magic_0 != meta->magic_1) ||
           (raid->magic_1 != meta->magic_2))) {
          continue;
      }

      switch (meta->type) {
      case NV_T_SPAN:
          raid->type = AR_T_SPAN;
          break;

      case NV_T_RAID0: 
          raid->type = AR_T_RAID0;
          break;

      case NV_T_RAID1:
          raid->type = AR_T_RAID1;
          break;

      case NV_T_RAID5:
          raid->type = AR_T_RAID5;
          break;

      case NV_T_RAID01:
          raid->type = AR_T_RAID01;
          break;

      default:
          device_printf(parent, "nVidia unknown RAID type 0x%02x\n",
                    meta->type);
          free(raidp[array], M_AR);
          raidp[array] = NULL;
          goto nvidia_out;
      }
      raid->magic_0 = meta->magic_1;
      raid->magic_1 = meta->magic_2;
      raid->format = AR_F_NVIDIA_RAID;
      raid->generation = 0;
      raid->interleave = meta->stripe_sectors;
      raid->width = meta->array_width;
      raid->total_disks = meta->total_disks;
      raid->total_sectors = meta->total_sectors;
      raid->heads = 255;
      raid->sectors = 63;
      raid->cylinders = raid->total_sectors / (63 * 255);
      raid->offset_sectors = 0;
      raid->rebuild_lba = meta->rebuild_lba;
      raid->lun = array;
      raid->status = AR_S_READY;
      if (meta->status & NV_S_DEGRADED)
          raid->status |= AR_S_DEGRADED;

      raid->disks[meta->disk_number].dev = parent;
      raid->disks[meta->disk_number].sectors =
          raid->total_sectors / raid->width;
      raid->disks[meta->disk_number].flags =
          (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE);
      ars->raid[raid->volume] = raid;
      ars->disk_number[raid->volume] = meta->disk_number;
      retval = 1;
      break;
    }

nvidia_out:
    free(meta, M_AR);
    return retval;
}

/* Promise FastTrak Metadata */
static int
ata_raid_promise_read_meta(device_t dev, struct ar_softc **raidp, int native)
{
    struct ata_raid_subdisk *ars = device_get_softc(dev);
    device_t parent = device_get_parent(dev);
    struct promise_raid_conf *meta;
    struct ar_softc *raid;
    u_int32_t checksum, *ptr;
    int array, count, disk, disksum = 0, retval = 0; 

    if (!(meta = (struct promise_raid_conf *)
        malloc(sizeof(struct promise_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
      return ENOMEM;

    if (ata_raid_rw(parent, PROMISE_LBA(parent),
                meta, sizeof(struct promise_raid_conf), ATA_R_READ)) {
      if (testing || bootverbose)
          device_printf(parent, "%s read metadata failed\n",
                    native ? "FreeBSD" : "Promise");
      goto promise_out;
    }

    /* check the signature */
    if (native) {
      if (strncmp(meta->promise_id, ATA_MAGIC, strlen(ATA_MAGIC))) {
          if (testing || bootverbose)
            device_printf(parent, "FreeBSD check1 failed\n");
          goto promise_out;
      }
    }
    else {
      if (strncmp(meta->promise_id, PR_MAGIC, strlen(PR_MAGIC))) {
          if (testing || bootverbose)
            device_printf(parent, "Promise check1 failed\n");
          goto promise_out;
      }
    }

    /* check if the checksum is OK */
    for (checksum = 0, ptr = (u_int32_t *)meta, count = 0; count < 511; count++)
      checksum += *ptr++;
    if (checksum != *ptr) {  
      if (testing || bootverbose)
          device_printf(parent, "%s check2 failed\n",
                    native ? "FreeBSD" : "Promise");           
      goto promise_out;
    }

    /* check on disk integrity status */
    if (meta->raid.integrity != PR_I_VALID) {
      if (testing || bootverbose)
          device_printf(parent, "%s check3 failed\n",
                    native ? "FreeBSD" : "Promise");           
      goto promise_out;
    }

    if (testing || bootverbose)
      ata_raid_promise_print_meta(meta);

    /* now convert Promise metadata into our generic form */
    for (array = 0; array < MAX_ARRAYS; array++) {
      if (!raidp[array]) {
          raidp[array] = 
            (struct ar_softc *)malloc(sizeof(struct ar_softc), M_AR,
                                M_NOWAIT | M_ZERO);
          if (!raidp[array]) {
            device_printf(parent, "failed to allocate metadata storage\n");
            goto promise_out;
          }
      }
      raid = raidp[array];
      if (raid->format &&
          (raid->format != (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID)))
          continue;

      if ((raid->format == (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID))&&
          !(meta->raid.magic_1 == (raid->magic_1)))
          continue;

      /* update our knowledge about the array config based on generation */
      if (!meta->raid.generation || meta->raid.generation > raid->generation){
          switch (meta->raid.type) {
          case PR_T_SPAN:
            raid->type = AR_T_SPAN;
            break;

          case PR_T_JBOD:
            raid->type = AR_T_JBOD;
            break;

          case PR_T_RAID0:
            raid->type = AR_T_RAID0;
            break;

          case PR_T_RAID1:
            raid->type = AR_T_RAID1;
            if (meta->raid.array_width > 1)
                raid->type = AR_T_RAID01;
            break;

          case PR_T_RAID5:
            raid->type = AR_T_RAID5;
            break;

          default:
            device_printf(parent, "%s unknown RAID type 0x%02x\n",
                        native ? "FreeBSD" : "Promise", meta->raid.type);
            free(raidp[array], M_AR);
            raidp[array] = NULL;
            goto promise_out;
          }
          raid->magic_1 = meta->raid.magic_1;
          raid->format = (native ? AR_F_FREEBSD_RAID : AR_F_PROMISE_RAID);
          raid->generation = meta->raid.generation;
          raid->interleave = 1 << meta->raid.stripe_shift;
          raid->width = meta->raid.array_width;
          raid->total_disks = meta->raid.total_disks;
          raid->heads = meta->raid.heads + 1;
          raid->sectors = meta->raid.sectors;
          raid->cylinders = meta->raid.cylinders + 1;
          raid->total_sectors = meta->raid.total_sectors;
          raid->offset_sectors = 0;
          raid->rebuild_lba = meta->raid.rebuild_lba;
          raid->lun = array;
          if ((meta->raid.status &
             (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) ==
            (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY)) {
            raid->status |= AR_S_READY;
            if (meta->raid.status & PR_S_DEGRADED)
                raid->status |= AR_S_DEGRADED;
          }
          else
            raid->status &= ~AR_S_READY;

          /* convert disk flags to our internal types */
          for (disk = 0; disk < meta->raid.total_disks; disk++) {
            raid->disks[disk].dev = NULL;
            raid->disks[disk].flags = 0;
            *((u_int64_t *)(raid->disks[disk].serial)) = 
                meta->raid.disk[disk].magic_0;
            disksum += meta->raid.disk[disk].flags;
            if (meta->raid.disk[disk].flags & PR_F_ONLINE)
                raid->disks[disk].flags |= AR_DF_ONLINE;
            if (meta->raid.disk[disk].flags & PR_F_ASSIGNED)
                raid->disks[disk].flags |= AR_DF_ASSIGNED;
            if (meta->raid.disk[disk].flags & PR_F_SPARE) {
                raid->disks[disk].flags &= ~(AR_DF_ONLINE | AR_DF_ASSIGNED);
                raid->disks[disk].flags |= AR_DF_SPARE;
            }
            if (meta->raid.disk[disk].flags & (PR_F_REDIR | PR_F_DOWN))
                raid->disks[disk].flags &= ~AR_DF_ONLINE;
          }
          if (!disksum) {
            device_printf(parent, "%s subdisks has no flags\n",
                        native ? "FreeBSD" : "Promise");
            free(raidp[array], M_AR);
            raidp[array] = NULL;
            goto promise_out;
          }
      }
      if (meta->raid.generation >= raid->generation) {
          int disk_number = meta->raid.disk_number;

          if (raid->disks[disk_number].flags && (meta->magic_0 ==
            *((u_int64_t *)(raid->disks[disk_number].serial)))) {
            raid->disks[disk_number].dev = parent;
            raid->disks[disk_number].flags |= AR_DF_PRESENT;
            raid->disks[disk_number].sectors = meta->raid.disk_sectors;
            if ((raid->disks[disk_number].flags &
                (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) ==
                (AR_DF_PRESENT | AR_DF_ASSIGNED | AR_DF_ONLINE)) {
                ars->raid[raid->volume] = raid;
                ars->disk_number[raid->volume] = disk_number;
                retval = 1;
            }
          }
      }
      break;
    }

promise_out:
    free(meta, M_AR);
    return retval;
}

static int
ata_raid_promise_write_meta(struct ar_softc *rdp)
{
    struct promise_raid_conf *meta;
    struct timeval timestamp;
    u_int32_t *ckptr;
    int count, disk, drive, error = 0;

    if (!(meta = (struct promise_raid_conf *)
        malloc(sizeof(struct promise_raid_conf), M_AR, M_NOWAIT))) {
      printf("ar%d: failed to allocate metadata storage\n", rdp->lun);
      return ENOMEM;
    }

    rdp->generation++;
    microtime(&timestamp);

    for (disk = 0; disk < rdp->total_disks; disk++) {
      for (count = 0; count < sizeof(struct promise_raid_conf); count++)
          *(((u_int8_t *)meta) + count) = 255 - (count % 256);
      meta->dummy_0 = 0x00020000;
      meta->raid.disk_number = disk;

      if (rdp->disks[disk].dev) {
          struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
          struct ata_channel *ch = 
            device_get_softc(device_get_parent(rdp->disks[disk].dev));

          meta->raid.channel = ch->unit;
          meta->raid.device = ATA_DEV(atadev->unit);
          meta->raid.disk_sectors = rdp->disks[disk].sectors;
          meta->raid.disk_offset = rdp->offset_sectors;
      }
      else {
          meta->raid.channel = 0;
          meta->raid.device = 0;
          meta->raid.disk_sectors = 0;
          meta->raid.disk_offset = 0;
      }
      meta->magic_0 = PR_MAGIC0(meta->raid) | timestamp.tv_sec;
      meta->magic_1 = timestamp.tv_sec >> 16;
      meta->magic_2 = timestamp.tv_sec;
      meta->raid.integrity = PR_I_VALID;
      meta->raid.magic_0 = meta->magic_0;
      meta->raid.rebuild_lba = rdp->rebuild_lba;
      meta->raid.generation = rdp->generation;

      if (rdp->status & AR_S_READY) {
          meta->raid.flags = (PR_F_VALID | PR_F_ASSIGNED | PR_F_ONLINE);
          meta->raid.status = 
            (PR_S_VALID | PR_S_ONLINE | PR_S_INITED | PR_S_READY);
          if (rdp->status & AR_S_DEGRADED)
            meta->raid.status |= PR_S_DEGRADED;
          else
            meta->raid.status |= PR_S_FUNCTIONAL;
      }
      else {
          meta->raid.flags = PR_F_DOWN;
          meta->raid.status = 0;
      }

      switch (rdp->type) {
      case AR_T_RAID0:
          meta->raid.type = PR_T_RAID0;
          break;
      case AR_T_RAID1:
          meta->raid.type = PR_T_RAID1;
          break;
      case AR_T_RAID01:
          meta->raid.type = PR_T_RAID1;
          break;
      case AR_T_RAID5:
          meta->raid.type = PR_T_RAID5;
          break;
      case AR_T_SPAN:
          meta->raid.type = PR_T_SPAN;
          break;
      case AR_T_JBOD:
          meta->raid.type = PR_T_JBOD;
          break;
      default:
          free(meta, M_AR);
          return ENODEV;
      }

      meta->raid.total_disks = rdp->total_disks;
      meta->raid.stripe_shift = ffs(rdp->interleave) - 1;
      meta->raid.array_width = rdp->width;
      meta->raid.array_number = rdp->lun;
      meta->raid.total_sectors = rdp->total_sectors;
      meta->raid.cylinders = rdp->cylinders - 1;
      meta->raid.heads = rdp->heads - 1;
      meta->raid.sectors = rdp->sectors;
      meta->raid.magic_1 = (u_int64_t)meta->magic_2<<16 | meta->magic_1;

      bzero(&meta->raid.disk, 8 * 12);
      for (drive = 0; drive < rdp->total_disks; drive++) {
          meta->raid.disk[drive].flags = 0;
          if (rdp->disks[drive].flags & AR_DF_PRESENT)
            meta->raid.disk[drive].flags |= PR_F_VALID;
          if (rdp->disks[drive].flags & AR_DF_ASSIGNED)
            meta->raid.disk[drive].flags |= PR_F_ASSIGNED;
          if (rdp->disks[drive].flags & AR_DF_ONLINE)
            meta->raid.disk[drive].flags |= PR_F_ONLINE;
          else
            if (rdp->disks[drive].flags & AR_DF_PRESENT)
                meta->raid.disk[drive].flags = (PR_F_REDIR | PR_F_DOWN);
          if (rdp->disks[drive].flags & AR_DF_SPARE)
            meta->raid.disk[drive].flags |= PR_F_SPARE;
          meta->raid.disk[drive].dummy_0 = 0x0;
          if (rdp->disks[drive].dev) {
            struct ata_channel *ch = 
                device_get_softc(device_get_parent(rdp->disks[drive].dev));
            struct ata_device *atadev =
                device_get_softc(rdp->disks[drive].dev);

            meta->raid.disk[drive].channel = ch->unit;
            meta->raid.disk[drive].device = ATA_DEV(atadev->unit);
          }
          meta->raid.disk[drive].magic_0 =
            PR_MAGIC0(meta->raid.disk[drive]) | timestamp.tv_sec;
      }

      if (rdp->disks[disk].dev) {
          if ((rdp->disks[disk].flags & (AR_DF_PRESENT | AR_DF_ONLINE)) ==
            (AR_DF_PRESENT | AR_DF_ONLINE)) {
            if (rdp->format == AR_F_FREEBSD_RAID)
                bcopy(ATA_MAGIC, meta->promise_id, sizeof(ATA_MAGIC));
            else
                bcopy(PR_MAGIC, meta->promise_id, sizeof(PR_MAGIC));
          }
          else
            bzero(meta->promise_id, sizeof(meta->promise_id));
          meta->checksum = 0;
          for (ckptr = (int32_t *)meta, count = 0; count < 511; count++)
            meta->checksum += *ckptr++;
          if (testing || bootverbose)
            ata_raid_promise_print_meta(meta);
          if (ata_raid_rw(rdp->disks[disk].dev,
                      PROMISE_LBA(rdp->disks[disk].dev),
                      meta, sizeof(struct promise_raid_conf),
                      ATA_R_WRITE | ATA_R_DIRECT)) {
            device_printf(rdp->disks[disk].dev, "write metadata failed\n");
            error = EIO;
          }
      }
    }
    free(meta, M_AR);
    return error;
}

/* Silicon Image Medley Metadata */
static int
ata_raid_sii_read_meta(device_t dev, struct ar_softc **raidp)
{
    struct ata_raid_subdisk *ars = device_get_softc(dev);
    device_t parent = device_get_parent(dev);
    struct sii_raid_conf *meta;
    struct ar_softc *raid = NULL;
    u_int16_t checksum, *ptr;
    int array, count, disk, retval = 0;

    if (!(meta = (struct sii_raid_conf *)
        malloc(sizeof(struct sii_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
      return ENOMEM;

    if (ata_raid_rw(parent, SII_LBA(parent),
                meta, sizeof(struct sii_raid_conf), ATA_R_READ)) {
      if (testing || bootverbose)
          device_printf(parent, "Silicon Image read metadata failed\n");
      goto sii_out;
    }

    /* check if this is a Silicon Image (Medley) RAID struct */
    for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 160; count++)
      checksum += *ptr++;
    if (checksum) {  
      if (testing || bootverbose)
          device_printf(parent, "Silicon Image check1 failed\n");
      goto sii_out;
    }

    for (checksum = 0, ptr = (u_int16_t *)meta, count = 0; count < 256; count++)
      checksum += *ptr++;
    if (checksum != meta->checksum_1) {  
      if (testing || bootverbose)
          device_printf(parent, "Silicon Image check2 failed\n");          
      goto sii_out;
    }

    /* check verison */
    if (meta->version_major != 0x0002 ||
      (meta->version_minor != 0x0000 && meta->version_minor != 0x0001)) {
      if (testing || bootverbose)
          device_printf(parent, "Silicon Image check3 failed\n");          
      goto sii_out;
    }

    if (testing || bootverbose)
      ata_raid_sii_print_meta(meta);

    /* now convert Silicon Image meta into our generic form */
    for (array = 0; array < MAX_ARRAYS; array++) {
      if (!raidp[array]) {
          raidp[array] = 
            (struct ar_softc *)malloc(sizeof(struct ar_softc), M_AR,
                                M_NOWAIT | M_ZERO);
          if (!raidp[array]) {
            device_printf(parent, "failed to allocate metadata storage\n");
            goto sii_out;
          }
      }
      raid = raidp[array];
      if (raid->format && (raid->format != AR_F_SII_RAID))
          continue;

      if (raid->format == AR_F_SII_RAID &&
          (raid->magic_0 != *((u_int64_t *)meta->timestamp))) {
          continue;
      }

      /* update our knowledge about the array config based on generation */
      if (!meta->generation || meta->generation > raid->generation) {
          switch (meta->type) {
          case SII_T_RAID0:
            raid->type = AR_T_RAID0;
            break;

          case SII_T_RAID1:
            raid->type = AR_T_RAID1;
            break;

          case SII_T_RAID01:
            raid->type = AR_T_RAID01;
            break;

          case SII_T_SPARE:
            device_printf(parent, "Silicon Image SPARE disk\n");
            free(raidp[array], M_AR);
            raidp[array] = NULL;
            goto sii_out;

          default:
            device_printf(parent,"Silicon Image unknown RAID type 0x%02x\n",
                        meta->type);
            free(raidp[array], M_AR);
            raidp[array] = NULL;
            goto sii_out;
          }
          raid->magic_0 = *((u_int64_t *)meta->timestamp);
          raid->format = AR_F_SII_RAID;
          raid->generation = meta->generation;
          raid->interleave = meta->stripe_sectors;
          raid->width = (meta->raid0_disks != 0xff) ? meta->raid0_disks : 1;
          raid->total_disks = 
            ((meta->raid0_disks != 0xff) ? meta->raid0_disks : 0) +
            ((meta->raid1_disks != 0xff) ? meta->raid1_disks : 0);
          raid->total_sectors = meta->total_sectors;
          raid->heads = 255;
          raid->sectors = 63;
          raid->cylinders = raid->total_sectors / (63 * 255);
          raid->offset_sectors = 0;
          raid->rebuild_lba = meta->rebuild_lba;
          raid->lun = array;
          strncpy(raid->name, meta->name,
                min(sizeof(raid->name), sizeof(meta->name)));

          /* clear out any old info */
          if (raid->generation) {
            for (disk = 0; disk < raid->total_disks; disk++) {
                raid->disks[disk].dev = NULL;
                raid->disks[disk].flags = 0;
            }
          }
      }
      if (meta->generation >= raid->generation) {
          /* XXX SOS add check for the right physical disk by serial# */
          if (meta->status & SII_S_READY) {
            int disk_number = (raid->type == AR_T_RAID01) ?
                meta->raid1_ident + (meta->raid0_ident << 1) :
                meta->disk_number;

            raid->disks[disk_number].dev = parent;
            raid->disks[disk_number].sectors = 
                raid->total_sectors / raid->width;
            raid->disks[disk_number].flags =
                (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
            ars->raid[raid->volume] = raid;
            ars->disk_number[raid->volume] = disk_number;
            retval = 1;
          }
      }
      break;
    }

sii_out:
    free(meta, M_AR);
    return retval;
}

/* Silicon Integrated Systems Metadata */
static int
ata_raid_sis_read_meta(device_t dev, struct ar_softc **raidp)
{
    struct ata_raid_subdisk *ars = device_get_softc(dev);
    device_t parent = device_get_parent(dev);
    struct sis_raid_conf *meta;
    struct ar_softc *raid = NULL;
    int array, disk_number, drive, retval = 0;

    if (!(meta = (struct sis_raid_conf *)
        malloc(sizeof(struct sis_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
      return ENOMEM;

    if (ata_raid_rw(parent, SIS_LBA(parent),
                meta, sizeof(struct sis_raid_conf), ATA_R_READ)) {
      if (testing || bootverbose)
          device_printf(parent,
                    "Silicon Integrated Systems read metadata failed\n");
    }

    /* check for SiS magic */
    if (meta->magic != SIS_MAGIC) {
      if (testing || bootverbose)
          device_printf(parent,
                    "Silicon Integrated Systems check1 failed\n");
      goto sis_out;
    }

    if (testing || bootverbose)
      ata_raid_sis_print_meta(meta);

    /* now convert SiS meta into our generic form */
    for (array = 0; array < MAX_ARRAYS; array++) {
      if (!raidp[array]) {
          raidp[array] = 
            (struct ar_softc *)malloc(sizeof(struct ar_softc), M_AR,
                                M_NOWAIT | M_ZERO);
          if (!raidp[array]) {
            device_printf(parent, "failed to allocate metadata storage\n");
            goto sis_out;
          }
      }

      raid = raidp[array];
      if (raid->format && (raid->format != AR_F_SIS_RAID))
          continue;

      if ((raid->format == AR_F_SIS_RAID) &&
          ((raid->magic_0 != meta->controller_pci_id) ||
           (raid->magic_1 != meta->timestamp))) {
          continue;
      }

      switch (meta->type_total_disks & SIS_T_MASK) {
      case SIS_T_JBOD:
          raid->type = AR_T_JBOD;
          raid->width = (meta->type_total_disks & SIS_D_MASK);
          raid->total_sectors += SIS_LBA(parent);
          break;

      case SIS_T_RAID0:
          raid->type = AR_T_RAID0;
          raid->width = (meta->type_total_disks & SIS_D_MASK);
          if (!raid->total_sectors || 
            (raid->total_sectors > (raid->width * SIS_LBA(parent))))
            raid->total_sectors = raid->width * SIS_LBA(parent);
          break;

      case SIS_T_RAID1:
          raid->type = AR_T_RAID1;
          raid->width = 1;
          if (!raid->total_sectors || (raid->total_sectors > SIS_LBA(parent)))
            raid->total_sectors = SIS_LBA(parent);
          break;

      default:
          device_printf(parent, "Silicon Integrated Systems "
                    "unknown RAID type 0x%08x\n", meta->magic);
          free(raidp[array], M_AR);
          raidp[array] = NULL;
          goto sis_out;
      }
      raid->magic_0 = meta->controller_pci_id;
      raid->magic_1 = meta->timestamp;
      raid->format = AR_F_SIS_RAID;
      raid->generation = 0;
      raid->interleave = meta->stripe_sectors;
      raid->total_disks = (meta->type_total_disks & SIS_D_MASK);
      raid->heads = 255;
      raid->sectors = 63;
      raid->cylinders = raid->total_sectors / (63 * 255);
      raid->offset_sectors = 0;
      raid->rebuild_lba = 0;
      raid->lun = array;
      /* XXX SOS if total_disks > 2 this doesn't float */
      if (((meta->disks & SIS_D_MASTER) >> 4) == meta->disk_number)
          disk_number = 0;
      else 
          disk_number = 1;

      for (drive = 0; drive < raid->total_disks; drive++) {
          raid->disks[drive].sectors = raid->total_sectors/raid->width;
          if (drive == disk_number) {
            raid->disks[disk_number].dev = parent;
            raid->disks[disk_number].flags =
                (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
            ars->raid[raid->volume] = raid;
            ars->disk_number[raid->volume] = disk_number;
          }
      }
      retval = 1;
      break;
    }

sis_out:
    free(meta, M_AR);
    return retval;
}

static int
ata_raid_sis_write_meta(struct ar_softc *rdp)
{
    struct sis_raid_conf *meta;
    struct timeval timestamp;
    int disk, error = 0;

    if (!(meta = (struct sis_raid_conf *)
        malloc(sizeof(struct sis_raid_conf), M_AR, M_NOWAIT | M_ZERO))) {
      printf("ar%d: failed to allocate metadata storage\n", rdp->lun);
      return ENOMEM;
    }

    rdp->generation++;
    microtime(&timestamp);

    meta->magic = SIS_MAGIC;
    /* XXX SOS if total_disks > 2 this doesn't float */
    for (disk = 0; disk < rdp->total_disks; disk++) {
      if (rdp->disks[disk].dev) {
          struct ata_channel *ch = 
            device_get_softc(device_get_parent(rdp->disks[disk].dev));
          struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);
          int disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);

          meta->disks |= disk_number << ((1 - disk) << 2);
      }
    }
    switch (rdp->type) {
    case AR_T_JBOD:
      meta->type_total_disks = SIS_T_JBOD;
      break;

    case AR_T_RAID0:
      meta->type_total_disks = SIS_T_RAID0;
      break;

    case AR_T_RAID1:
      meta->type_total_disks = SIS_T_RAID1;
      break;

    default:
      free(meta, M_AR);
      return ENODEV;
    }
    meta->type_total_disks |= (rdp->total_disks & SIS_D_MASK);
    meta->stripe_sectors = rdp->interleave;
    meta->timestamp = timestamp.tv_sec;

    for (disk = 0; disk < rdp->total_disks; disk++) {
      if (rdp->disks[disk].dev) {
          struct ata_channel *ch = 
            device_get_softc(device_get_parent(rdp->disks[disk].dev));
          struct ata_device *atadev = device_get_softc(rdp->disks[disk].dev);

          meta->controller_pci_id =
            (pci_get_vendor(GRANDPARENT(rdp->disks[disk].dev)) << 16) |
            pci_get_device(GRANDPARENT(rdp->disks[disk].dev));
          bcopy(atadev->param.model, meta->model, sizeof(meta->model));

          /* XXX SOS if total_disks > 2 this may not float */
          meta->disk_number = 1 + ATA_DEV(atadev->unit) + (ch->unit << 1);

          if (testing || bootverbose)
            ata_raid_sis_print_meta(meta);

          if (ata_raid_rw(rdp->disks[disk].dev,
                      SIS_LBA(rdp->disks[disk].dev),
                      meta, sizeof(struct sis_raid_conf),
                      ATA_R_WRITE | ATA_R_DIRECT)) {
            device_printf(rdp->disks[disk].dev, "write metadata failed\n");
            error = EIO;
          }
      }
    }
    free(meta, M_AR);
    return error;
}

/* VIA Tech V-RAID Metadata */
static int
ata_raid_via_read_meta(device_t dev, struct ar_softc **raidp)
{
    struct ata_raid_subdisk *ars = device_get_softc(dev);
    device_t parent = device_get_parent(dev);
    struct via_raid_conf *meta;
    struct ar_softc *raid = NULL;
    u_int8_t checksum, *ptr;
    int array, count, disk, retval = 0;

    if (!(meta = (struct via_raid_conf *)
        malloc(sizeof(struct via_raid_conf), M_AR, M_NOWAIT | M_ZERO)))
      return ENOMEM;

    if (ata_raid_rw(parent, VIA_LBA(parent),
                meta, sizeof(struct via_raid_conf), ATA_R_READ)) {
      if (testing || bootverbose)
          device_printf(parent, "VIA read metadata failed\n");
      goto via_out;
    }

    /* check if this is a VIA RAID struct */
    if (meta->magic != VIA_MAGIC) {
      if (testing || bootverbose)
          device_printf(parent, "VIA check1 failed\n");
      goto via_out;
    }

    /* calculate checksum and compare for valid */
    for (checksum = 0, ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
      checksum += *ptr++;
    if (checksum != meta->checksum) {  
      if (testing || bootverbose)
          device_printf(parent, "VIA check2 failed\n");
      goto via_out;
    }

    if (testing || bootverbose)
      ata_raid_via_print_meta(meta);

    /* now convert VIA meta into our generic form */
    for (array = 0; array < MAX_ARRAYS; array++) {
      if (!raidp[array]) {
          raidp[array] = 
            (struct ar_softc *)malloc(sizeof(struct ar_softc), M_AR,
                                M_NOWAIT | M_ZERO);
          if (!raidp[array]) {
            device_printf(parent, "failed to allocate metadata storage\n");
            goto via_out;
          }
      }
      raid = raidp[array];
      if (raid->format && (raid->format != AR_F_VIA_RAID))
          continue;

      if (raid->format == AR_F_VIA_RAID && (raid->magic_0 != meta->disks[0]))
          continue;

      switch (meta->type & VIA_T_MASK) {
      case VIA_T_RAID0:
          raid->type = AR_T_RAID0;
          raid->width = meta->stripe_layout & VIA_L_DISKS;
          if (!raid->total_sectors ||
            (raid->total_sectors > (raid->width * meta->disk_sectors)))
            raid->total_sectors = raid->width * meta->disk_sectors;
          break;

      case VIA_T_RAID1:
          raid->type = AR_T_RAID1;
          raid->width = 1;
          raid->total_sectors = meta->disk_sectors;
          break;

      case VIA_T_RAID01:
          raid->type = AR_T_RAID01;
          raid->width = meta->stripe_layout & VIA_L_DISKS;
          if (!raid->total_sectors ||
            (raid->total_sectors > (raid->width * meta->disk_sectors)))
            raid->total_sectors = raid->width * meta->disk_sectors;
          break;

      case VIA_T_RAID5:
          raid->type = AR_T_RAID5;
          raid->width = meta->stripe_layout & VIA_L_DISKS;
          if (!raid->total_sectors ||
            (raid->total_sectors > ((raid->width - 1)*meta->disk_sectors)))
            raid->total_sectors = (raid->width - 1) * meta->disk_sectors;
          break;

      case VIA_T_SPAN:
          raid->type = AR_T_SPAN;
          raid->width = 1;
          raid->total_sectors += meta->disk_sectors;
          break;

      default:
          device_printf(parent,"VIA unknown RAID type 0x%02x\n", meta->type);
          free(raidp[array], M_AR);
          raidp[array] = NULL;
          goto via_out;
      }
      raid->magic_0 = meta->disks[0];
      raid->format = AR_F_VIA_RAID;
      raid->generation = 0;
      raid->interleave = 
          0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT);
      for (count = 0, disk = 0; disk < 8; disk++)
          if (meta->disks[disk])
            count++;
      raid->total_disks = count;
      raid->heads = 255;
      raid->sectors = 63;
      raid->cylinders = raid->total_sectors / (63 * 255);
      raid->offset_sectors = 0;
      raid->rebuild_lba = 0;
      raid->lun = array;

      for (disk = 0; disk < raid->total_disks; disk++) {
          if (meta->disks[disk] == meta->disk_id) {
            raid->disks[disk].dev = parent;
            bcopy(&meta->disk_id, raid->disks[disk].serial,
                  sizeof(u_int32_t));
            raid->disks[disk].sectors = meta->disk_sectors;
            raid->disks[disk].flags =
                (AR_DF_ONLINE | AR_DF_PRESENT | AR_DF_ASSIGNED);
            ars->raid[raid->volume] = raid;
            ars->disk_number[raid->volume] = disk;
            retval = 1;
            break;
          }
      }
      break;
    }

via_out:
    free(meta, M_AR);
    return retval;
}

static int
ata_raid_via_write_meta(struct ar_softc *rdp)
{
    struct via_raid_conf *meta;
    int disk, error = 0;

    if (!(meta = (struct via_raid_conf *)
        malloc(sizeof(struct via_raid_conf), M_AR, M_NOWAIT | M_ZERO))) {
      printf("ar%d: failed to allocate metadata storage\n", rdp->lun);
      return ENOMEM;
    }

    rdp->generation++;

    meta->magic = VIA_MAGIC;
    meta->dummy_0 = 0x02;
    switch (rdp->type) {
    case AR_T_SPAN:
      meta->type = VIA_T_SPAN;
      meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
      break;

    case AR_T_RAID0:
      meta->type = VIA_T_RAID0;
      meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
      meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
      break;

    case AR_T_RAID1:
      meta->type = VIA_T_RAID1;
      meta->stripe_layout = (rdp->total_disks & VIA_L_DISKS);
      break;

    case AR_T_RAID5:
      meta->type = VIA_T_RAID5;
      meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
      meta->stripe_layout |= (rdp->total_disks & VIA_L_DISKS);
      break;

    case AR_T_RAID01:
      meta->type = VIA_T_RAID01;
      meta->stripe_layout = ((rdp->interleave >> 1) & VIA_L_MASK);
      meta->stripe_layout |= (rdp->width & VIA_L_DISKS);
      break;

    default:
      free(meta, M_AR);
      return ENODEV;
    }
    meta->type |= VIA_T_BOOTABLE;       /* XXX SOS */
    meta->disk_sectors = 
      rdp->total_sectors / (rdp->width - (rdp->type == AR_RAID5));
    for (disk = 0; disk < rdp->total_disks; disk++)
      meta->disks[disk] = (u_int32_t)(uintptr_t)rdp->disks[disk].dev;

    for (disk = 0; disk < rdp->total_disks; disk++) {
      if (rdp->disks[disk].dev) {
          u_int8_t *ptr;
          int count;

          meta->disk_index = disk * sizeof(u_int32_t);
          if (rdp->type == AR_T_RAID01)
            meta->disk_index = ((meta->disk_index & 0x08) << 2) |
                           (meta->disk_index & ~0x08);
          meta->disk_id = meta->disks[disk];
          meta->checksum = 0;
          for (ptr = (u_int8_t *)meta, count = 0; count < 50; count++)
            meta->checksum += *ptr++;

          if (testing || bootverbose)
            ata_raid_via_print_meta(meta);

          if (ata_raid_rw(rdp->disks[disk].dev,
                      VIA_LBA(rdp->disks[disk].dev),
                      meta, sizeof(struct via_raid_conf),
                      ATA_R_WRITE | ATA_R_DIRECT)) {
            device_printf(rdp->disks[disk].dev, "write metadata failed\n");
            error = EIO;
          }
      }
    }
    free(meta, M_AR);
    return error;
}

static struct ata_request *
ata_raid_init_request(struct ar_softc *rdp, struct bio *bio)
{
    struct ata_request *request;

    if (!(request = ata_alloc_request())) {
      printf("FAILURE - out of memory in ata_raid_init_request\n");
      return NULL;
    }
    request->timeout = 5;
    request->retries = 2;
    request->callback = ata_raid_done;
    request->driver = rdp;
    request->bio = bio;
    switch (request->bio->bio_cmd) {
    case BIO_READ:
      request->flags = ATA_R_READ;
      break;
    case BIO_WRITE:
      request->flags = ATA_R_WRITE;
      break;
    }
    return request;
}

static int
ata_raid_send_request(struct ata_request *request)
{
    struct ata_device *atadev = device_get_softc(request->dev);
  
    request->transfersize = min(request->bytecount, atadev->max_iosize);
    if (request->flags & ATA_R_READ) {
      if (atadev->mode >= ATA_DMA) {
          request->flags |= ATA_R_DMA;
          request->u.ata.command = ATA_READ_DMA;
      }
      else if (atadev->max_iosize > DEV_BSIZE)
          request->u.ata.command = ATA_READ_MUL;
      else
          request->u.ata.command = ATA_READ;
    }
    else if (request->flags & ATA_R_WRITE) {
      if (atadev->mode >= ATA_DMA) {
          request->flags |= ATA_R_DMA;
          request->u.ata.command = ATA_WRITE_DMA;
      }
      else if (atadev->max_iosize > DEV_BSIZE)
          request->u.ata.command = ATA_WRITE_MUL;
      else
          request->u.ata.command = ATA_WRITE;
    }
    else {
      device_printf(request->dev, "FAILURE - unknown IO operation\n");
      ata_free_request(request);
      return EIO;
    }
    request->flags |= (ATA_R_ORDERED | ATA_R_THREAD);
    ata_queue_request(request);
    return 0;
}

static int
ata_raid_rw(device_t dev, u_int64_t lba, void *data, u_int bcount, int flags)
{
    struct ata_device *atadev = device_get_softc(dev);
    struct ata_request *request;
    int error;

    if (bcount % DEV_BSIZE) {
      device_printf(dev, "FAILURE - transfers must be modulo sectorsize\n");
      return ENOMEM;
    }
      
    if (!(request = ata_alloc_request())) {
      device_printf(dev, "FAILURE - out of memory in ata_raid_rw\n");
      return ENOMEM;
    }

    /* setup request */
    request->dev = dev;
    request->timeout = 10;
    request->retries = 0;
    request->data = data;
    request->bytecount = bcount;
    request->transfersize = DEV_BSIZE;
    request->u.ata.lba = lba;
    request->u.ata.count = request->bytecount / DEV_BSIZE;
    request->flags = flags;

    if (flags & ATA_R_READ) {
      if (atadev->mode >= ATA_DMA) {
          request->u.ata.command = ATA_READ_DMA;
          request->flags |= ATA_R_DMA;
      }
      else
          request->u.ata.command = ATA_READ;
      ata_queue_request(request);
    }
    else if (flags & ATA_R_WRITE) {
      if (atadev->mode >= ATA_DMA) {
          request->u.ata.command = ATA_WRITE_DMA;
          request->flags |= ATA_R_DMA;
      }
      else
          request->u.ata.command = ATA_WRITE;
      ata_queue_request(request);
    }
    else {
      device_printf(dev, "FAILURE - unknown IO operation\n");
      request->result = EIO;
    }
    error = request->result;
    ata_free_request(request);
    return error;
}

/*
 * module handeling
 */
static int
ata_raid_subdisk_probe(device_t dev)
{
    device_quiet(dev);
    return 0;
}

static int
ata_raid_subdisk_attach(device_t dev)
{
    struct ata_raid_subdisk *ars = device_get_softc(dev);
    int volume;

    for (volume = 0; volume < MAX_VOLUMES; volume++) {
      ars->raid[volume] = NULL;
      ars->disk_number[volume] = -1;
    }
    ata_raid_read_metadata(dev);
    return 0;
}

static int
ata_raid_subdisk_detach(device_t dev)
{
    struct ata_raid_subdisk *ars = device_get_softc(dev);
    int volume;

    for (volume = 0; volume < MAX_VOLUMES; volume++) {
      if (ars->raid[volume]) {
          ars->raid[volume]->disks[ars->disk_number[volume]].flags &= 
            ~(AR_DF_PRESENT | AR_DF_ONLINE);
          ars->raid[volume]->disks[ars->disk_number[volume]].dev = NULL;
          if (mtx_initialized(&ars->raid[volume]->lock))
            ata_raid_config_changed(ars->raid[volume], 1);
          ars->raid[volume] = NULL;
          ars->disk_number[volume] = -1;
      }
    }
    return 0;
}

static device_method_t ata_raid_sub_methods[] = {
    /* device interface */
    DEVMETHOD(device_probe,     ata_raid_subdisk_probe),
    DEVMETHOD(device_attach,    ata_raid_subdisk_attach),
    DEVMETHOD(device_detach,    ata_raid_subdisk_detach),
    { 0, 0 }
};

static driver_t ata_raid_sub_driver = {
    "subdisk",
    ata_raid_sub_methods,
    sizeof(struct ata_raid_subdisk)
};

DRIVER_MODULE(subdisk, ad, ata_raid_sub_driver, ata_raid_sub_devclass, NULL, NULL);

static int
ata_raid_module_event_handler(module_t mod, int what, void *arg)
{
    int i;

    switch (what) {
    case MOD_LOAD:
      if (testing || bootverbose)
          printf("ATA PseudoRAID loaded\n");
#if 0
      /* setup table to hold metadata for all ATA PseudoRAID arrays */
      ata_raid_arrays = malloc(sizeof(struct ar_soft *) * MAX_ARRAYS,
                        M_AR, M_NOWAIT | M_ZERO);
      if (!ata_raid_arrays) {
          printf("ataraid: no memory for metadata storage\n");
          return ENOMEM;
      }
#endif
      /* attach found PseudoRAID arrays */
      for (i = 0; i < MAX_ARRAYS; i++) {
          struct ar_softc *rdp = ata_raid_arrays[i];
          
          if (!rdp || !rdp->format)
            continue;
          if (testing || bootverbose)
            ata_raid_print_meta(rdp);
          ata_raid_attach(rdp, 0);
      }   
      ata_raid_ioctl_func = ata_raid_ioctl;
      return 0;

    case MOD_UNLOAD:
      /* detach found PseudoRAID arrays */
      for (i = 0; i < MAX_ARRAYS; i++) {
          struct ar_softc *rdp = ata_raid_arrays[i];

          if (!rdp || !rdp->status)
            continue;
          if (mtx_initialized(&rdp->lock))
            mtx_destroy(&rdp->lock);
          if (rdp->disk)
            disk_destroy(rdp->disk);
      }
      if (testing || bootverbose)
          printf("ATA PseudoRAID unloaded\n");
#if 0
      free(ata_raid_arrays, M_AR);
#endif
      ata_raid_ioctl_func = NULL;
      return 0;
      
    default:
      return EOPNOTSUPP;
    }
}

static moduledata_t ata_raid_moduledata =
    { "ataraid", ata_raid_module_event_handler, NULL };
DECLARE_MODULE(ata, ata_raid_moduledata, SI_SUB_RAID, SI_ORDER_FIRST);
MODULE_VERSION(ataraid, 1);
MODULE_DEPEND(ataraid, ata, 1, 1, 1);
MODULE_DEPEND(ataraid, ad, 1, 1, 1);

static char *
ata_raid_format(struct ar_softc *rdp)
{
    switch (rdp->format) {
    case AR_F_FREEBSD_RAID:     return "FreeBSD PseudoRAID";
    case AR_F_ADAPTEC_RAID:     return "Adaptec HostRAID";
    case AR_F_HPTV2_RAID:       return "HighPoint v2 RocketRAID";
    case AR_F_HPTV3_RAID:       return "HighPoint v3 RocketRAID";
    case AR_F_INTEL_RAID:       return "Intel MatrixRAID";
    case AR_F_ITE_RAID:         return "Integrated Technology Express";
    case AR_F_JMICRON_RAID:     return "JMicron Technology Corp";
    case AR_F_LSIV2_RAID:       return "LSILogic v2 MegaRAID";
    case AR_F_LSIV3_RAID:       return "LSILogic v3 MegaRAID";
    case AR_F_NVIDIA_RAID:      return "nVidia MediaShield";
    case AR_F_PROMISE_RAID:     return "Promise Fasttrak";
    case AR_F_SII_RAID:         return "Silicon Image Medley";
    case AR_F_SIS_RAID:         return "Silicon Integrated Systems";
    case AR_F_VIA_RAID:         return "VIA Tech V-RAID";
    default:                    return "UNKNOWN";
    }
}

static char *
ata_raid_type(struct ar_softc *rdp)
{
    switch (rdp->type) {
    case AR_T_JBOD:     return "JBOD";
    case AR_T_SPAN:     return "SPAN";
    case AR_T_RAID0:    return "RAID0";
    case AR_T_RAID1:    return "RAID1";
    case AR_T_RAID3:    return "RAID3";
    case AR_T_RAID4:    return "RAID4";
    case AR_T_RAID5:    return "RAID5";
    case AR_T_RAID01:   return "RAID0+1";
    default:            return "UNKNOWN";
    }
}

static char *
ata_raid_flags(struct ar_softc *rdp)
{
    switch (rdp->status & (AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING)) {
    case AR_S_READY:                                    return "READY";
    case AR_S_READY | AR_S_DEGRADED:                    return "DEGRADED";
    case AR_S_READY | AR_S_REBUILDING:
    case AR_S_READY | AR_S_DEGRADED | AR_S_REBUILDING:  return "REBUILDING";
    default:                                            return "BROKEN";
    }
}

/* debugging gunk */
static void
ata_raid_print_meta(struct ar_softc *raid)
{
    int i;

    printf("********** ATA PseudoRAID ar%d Metadata **********\n", raid->lun);
    printf("=================================================\n");
    printf("format              %s\n", ata_raid_format(raid));
    printf("type                %s\n", ata_raid_type(raid));
    printf("flags               0x%02x %b\n", raid->status, raid->status,
         "\20\3REBUILDING\2DEGRADED\1READY\n");
    printf("magic_0             0x%016jx\n", raid->magic_0);
    printf("magic_1             0x%016jx\n",raid->magic_1);
    printf("generation          %u\n", raid->generation);
    printf("total_sectors       %ju\n", raid->total_sectors);
    printf("offset_sectors      %ju\n", raid->offset_sectors);
    printf("heads               %u\n", raid->heads);
    printf("sectors             %u\n", raid->sectors);
    printf("cylinders           %u\n", raid->cylinders);
    printf("width               %u\n", raid->width);
    printf("interleave          %u\n", raid->interleave);
    printf("total_disks         %u\n", raid->total_disks);
    for (i = 0; i < raid->total_disks; i++) {
      printf("    disk %d:      flags = 0x%02x %b\n", i, raid->disks[i].flags,
             raid->disks[i].flags, "\20\4ONLINE\3SPARE\2ASSIGNED\1PRESENT\n");
      if (raid->disks[i].dev) {
          printf("        ");
          device_printf(raid->disks[i].dev, " sectors %jd\n",
                    raid->disks[i].sectors);
      }
    }
    printf("=================================================\n");
}

static char *
ata_raid_adaptec_type(int type)
{
    static char buffer[16];

    switch (type) {
    case ADP_T_RAID0:   return "RAID0";
    case ADP_T_RAID1:   return "RAID1";
    default:            sprintf(buffer, "UNKNOWN 0x%02x", type);
                  return buffer;
    }
}

static void
ata_raid_adaptec_print_meta(struct adaptec_raid_conf *meta)
{
    int i;

    printf("********* ATA Adaptec HostRAID Metadata *********\n");
    printf("magic_0             <0x%08x>\n", be32toh(meta->magic_0));
    printf("generation          0x%08x\n", be32toh(meta->generation));
    printf("dummy_0             0x%04x\n", be16toh(meta->dummy_0));
    printf("total_configs       %u\n", be16toh(meta->total_configs));
    printf("dummy_1             0x%04x\n", be16toh(meta->dummy_1));
    printf("checksum            0x%04x\n", be16toh(meta->checksum));
    printf("dummy_2             0x%08x\n", be32toh(meta->dummy_2));
    printf("dummy_3             0x%08x\n", be32toh(meta->dummy_3));
    printf("flags               0x%08x\n", be32toh(meta->flags));
    printf("timestamp           0x%08x\n", be32toh(meta->timestamp));
    printf("dummy_4             0x%08x 0x%08x 0x%08x 0x%08x\n",
         be32toh(meta->dummy_4[0]), be32toh(meta->dummy_4[1]),
         be32toh(meta->dummy_4[2]), be32toh(meta->dummy_4[3]));
    printf("dummy_5             0x%08x 0x%08x 0x%08x 0x%08x\n",
         be32toh(meta->dummy_5[0]), be32toh(meta->dummy_5[1]),
         be32toh(meta->dummy_5[2]), be32toh(meta->dummy_5[3]));

    for (i = 0; i < be16toh(meta->total_configs); i++) {
      printf("    %d   total_disks  %u\n", i,
             be16toh(meta->configs[i].disk_number));
      printf("    %d   generation   %u\n", i,
             be16toh(meta->configs[i].generation));
      printf("    %d   magic_0      0x%08x\n", i,
             be32toh(meta->configs[i].magic_0));
      printf("    %d   dummy_0      0x%02x\n", i, meta->configs[i].dummy_0);
      printf("    %d   type         %s\n", i,
             ata_raid_adaptec_type(meta->configs[i].type));
      printf("    %d   dummy_1      0x%02x\n", i, meta->configs[i].dummy_1);
      printf("    %d   flags        %d\n", i,
             be32toh(meta->configs[i].flags));
      printf("    %d   dummy_2      0x%02x\n", i, meta->configs[i].dummy_2);
      printf("    %d   dummy_3      0x%02x\n", i, meta->configs[i].dummy_3);
      printf("    %d   dummy_4      0x%02x\n", i, meta->configs[i].dummy_4);
      printf("    %d   dummy_5      0x%02x\n", i, meta->configs[i].dummy_5);
      printf("    %d   disk_number  %u\n", i,
             be32toh(meta->configs[i].disk_number));
      printf("    %d   dummy_6      0x%08x\n", i,
             be32toh(meta->configs[i].dummy_6));
      printf("    %d   sectors      %u\n", i,
             be32toh(meta->configs[i].sectors));
      printf("    %d   stripe_shift %u\n", i,
             be16toh(meta->configs[i].stripe_shift));
      printf("    %d   dummy_7      0x%08x\n", i,
             be32toh(meta->configs[i].dummy_7));
      printf("    %d   dummy_8      0x%08x 0x%08x 0x%08x 0x%08x\n", i,
             be32toh(meta->configs[i].dummy_8[0]),
             be32toh(meta->configs[i].dummy_8[1]),
             be32toh(meta->configs[i].dummy_8[2]),
             be32toh(meta->configs[i].dummy_8[3]));
      printf("    %d   name         <%s>\n", i, meta->configs[i].name);
    }
    printf("magic_1             <0x%08x>\n", be32toh(meta->magic_1));
    printf("magic_2             <0x%08x>\n", be32toh(meta->magic_2));
    printf("magic_3             <0x%08x>\n", be32toh(meta->magic_3));
    printf("magic_4             <0x%08x>\n", be32toh(meta->magic_4));
    printf("=================================================\n");
}

static char *
ata_raid_hptv2_type(int type)
{
    static char buffer[16];

    switch (type) {
    case HPTV2_T_RAID0:         return "RAID0";
    case HPTV2_T_RAID1:         return "RAID1";
    case HPTV2_T_RAID01_RAID0:  return "RAID01_RAID0";
    case HPTV2_T_SPAN:          return "SPAN";
    case HPTV2_T_RAID_3:        return "RAID3";
    case HPTV2_T_RAID_5:        return "RAID5";
    case HPTV2_T_JBOD:          return "JBOD";
    case HPTV2_T_RAID01_RAID1:  return "RAID01_RAID1";
    default:            sprintf(buffer, "UNKNOWN 0x%02x", type);
                  return buffer;
    }
}

static void
ata_raid_hptv2_print_meta(struct hptv2_raid_conf *meta)
{
    int i;

    printf("****** ATA Highpoint V2 RocketRAID Metadata *****\n");
    printf("magic               0x%08x\n", meta->magic);
    printf("magic_0             0x%08x\n", meta->magic_0);
    printf("magic_1             0x%08x\n", meta->magic_1);
    printf("order               0x%08x\n", meta->order);
    printf("array_width         %u\n", meta->array_width);
    printf("stripe_shift        %u\n", meta->stripe_shift);
    printf("type                %s\n", ata_raid_hptv2_type(meta->type));
    printf("disk_number         %u\n", meta->disk_number);
    printf("total_sectors       %u\n", meta->total_sectors);
    printf("disk_mode           0x%08x\n", meta->disk_mode);
    printf("boot_mode           0x%08x\n", meta->boot_mode);
    printf("boot_disk           0x%02x\n", meta->boot_disk);
    printf("boot_protect        0x%02x\n", meta->boot_protect);
    printf("log_entries         0x%02x\n", meta->error_log_entries);
    printf("log_index           0x%02x\n", meta->error_log_index);
    if (meta->error_log_entries) {
      printf("    timestamp  reason disk  status  sectors lba\n");
      for (i = meta->error_log_index;
           i < meta->error_log_index + meta->error_log_entries; i++)
          printf("    0x%08x  0x%02x  0x%02x  0x%02x    0x%02x    0x%08x\n",
               meta->errorlog[i%32].timestamp,
               meta->errorlog[i%32].reason,
               meta->errorlog[i%32].disk, meta->errorlog[i%32].status,
               meta->errorlog[i%32].sectors, meta->errorlog[i%32].lba);
    }
    printf("rebuild_lba         0x%08x\n", meta->rebuild_lba);
    printf("dummy_1             0x%02x\n", meta->dummy_1);
    printf("name_1              <%.15s>\n", meta->name_1);
    printf("dummy_2             0x%02x\n", meta->dummy_2);
    printf("name_2              <%.15s>\n", meta->name_2);
    printf("=================================================\n");
}

static char *
ata_raid_hptv3_type(int type)
{
    static char buffer[16];

    switch (type) {
    case HPTV3_T_SPARE: return "SPARE";
    case HPTV3_T_JBOD:  return "JBOD";
    case HPTV3_T_SPAN:  return "SPAN";
    case HPTV3_T_RAID0: return "RAID0";
    case HPTV3_T_RAID1: return "RAID1";
    case HPTV3_T_RAID3: return "RAID3";
    case HPTV3_T_RAID5: return "RAID5";
    default:            sprintf(buffer, "UNKNOWN 0x%02x", type);
                  return buffer;
    }
}

static void
ata_raid_hptv3_print_meta(struct hptv3_raid_conf *meta)
{
    int i;

    printf("****** ATA Highpoint V3 RocketRAID Metadata *****\n");
    printf("magic               0x%08x\n", meta->magic);
    printf("magic_0             0x%08x\n", meta->magic_0);
    printf("checksum_0          0x%02x\n", meta->checksum_0);
    printf("mode                0x%02x\n", meta->mode);
    printf("user_mode           0x%02x\n", meta->user_mode);
    printf("config_entries      0x%02x\n", meta->config_entries);
    for (i = 0; i < meta->config_entries; i++) {
      printf("config %d:\n", i);
      printf("    total_sectors       %ju\n",
             meta->configs[0].total_sectors +
             ((u_int64_t)meta->configs_high[0].total_sectors << 32));
      printf("    type                %s\n",
             ata_raid_hptv3_type(meta->configs[i].type)); 
      printf("    total_disks         %u\n", meta->configs[i].total_disks);
      printf("    disk_number         %u\n", meta->configs[i].disk_number);
      printf("    stripe_shift        %u\n", meta->configs[i].stripe_shift);
      printf("    status              %b\n", meta->configs[i].status,
             "\20\2RAID5\1NEED_REBUILD\n");
      printf("    critical_disks      %u\n", meta->configs[i].critical_disks);
      printf("    rebuild_lba         %ju\n",
             meta->configs_high[0].rebuild_lba +
             ((u_int64_t)meta->configs_high[0].rebuild_lba << 32));
    }
    printf("name                <%.16s>\n", meta->name);
    printf("timestamp           0x%08x\n", meta->timestamp);
    printf("description         <%.16s>\n", meta->description);
    printf("creator             <%.16s>\n", meta->creator);
    printf("checksum_1          0x%02x\n", meta->checksum_1);
    printf("dummy_0             0x%02x\n", meta->dummy_0);
    printf("dummy_1             0x%02x\n", meta->dummy_1);
    printf("flags               %b\n", meta->flags,
         "\20\4RCACHE\3WCACHE\2NCQ\1TCQ\n");
    printf("=================================================\n");
}

static char *
ata_raid_intel_type(int type)
{
    static char buffer[16];

    switch (type) {
    case INTEL_T_RAID0: return "RAID0";
    case INTEL_T_RAID1: return "RAID1";
    case INTEL_T_RAID5: return "RAID5";
    default:            sprintf(buffer, "UNKNOWN 0x%02x", type);
                  return buffer;
    }
}

static void
ata_raid_intel_print_meta(struct intel_raid_conf *meta)
{
    struct intel_raid_mapping *map;
    int i, j;

    printf("********* ATA Intel MatrixRAID Metadata *********\n");
    printf("intel_id            <%.24s>\n", meta->intel_id);
    printf("version             <%.6s>\n", meta->version);
    printf("checksum            0x%08x\n", meta->checksum);
    printf("config_size         0x%08x\n", meta->config_size);
    printf("config_id           0x%08x\n", meta->config_id);
    printf("generation          0x%08x\n", meta->generation);
    printf("total_disks         %u\n", meta->total_disks);
    printf("total_volumes       %u\n", meta->total_volumes);
    printf("DISK#   serial disk_sectors disk_id flags\n");
    for (i = 0; i < meta->total_disks; i++ ) {
      printf("    %d   <%.16s> %u 0x%08x 0x%08x\n", i,
             meta->disk[i].serial, meta->disk[i].sectors,
             meta->disk[i].id, meta->disk[i].flags);
    }
    map = (struct intel_raid_mapping *)&meta->disk[meta->total_disks];
    for (j = 0; j < meta->total_volumes; j++) {
      printf("name                %.16s\n", map->name);
      printf("total_sectors       %ju\n", map->total_sectors);
      printf("state               %u\n", map->state);
      printf("reserved            %u\n", map->reserved);
      printf("offset              %u\n", map->offset);
      printf("disk_sectors        %u\n", map->disk_sectors);
      printf("stripe_count        %u\n", map->stripe_count);
      printf("stripe_sectors      %u\n", map->stripe_sectors);
      printf("status              %u\n", map->status);
      printf("type                %s\n", ata_raid_intel_type(map->type));
      printf("total_disks         %u\n", map->total_disks);
      printf("magic[0]            0x%02x\n", map->magic[0]);
      printf("magic[1]            0x%02x\n", map->magic[1]);
      printf("magic[2]            0x%02x\n", map->magic[2]);
      for (i = 0; i < map->total_disks; i++ ) {
          printf("    disk %d at disk_idx 0x%08x\n", i, map->disk_idx[i]);
      }
      map = (struct intel_raid_mapping *)&map->disk_idx[map->total_disks];
    }
    printf("=================================================\n");
}

static char *
ata_raid_ite_type(int type)
{
    static char buffer[16];

    switch (type) {
    case ITE_T_RAID0:   return "RAID0";
    case ITE_T_RAID1:   return "RAID1";
    case ITE_T_RAID01:  return "RAID0+1";
    case ITE_T_SPAN:    return "SPAN";
    default:            sprintf(buffer, "UNKNOWN 0x%02x", type);
                  return buffer;
    }
}

static void
ata_raid_ite_print_meta(struct ite_raid_conf *meta)
{
    printf("*** ATA Integrated Technology Express Metadata **\n");
    printf("ite_id              <%.40s>\n", meta->ite_id);
    printf("timestamp_0         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
         *((u_int16_t *)meta->timestamp_0), meta->timestamp_0[2],
         meta->timestamp_0[3], meta->timestamp_0[5], meta->timestamp_0[4],
         meta->timestamp_0[7], meta->timestamp_0[6]);
    printf("total_sectors       %jd\n", meta->total_sectors);
    printf("type                %s\n", ata_raid_ite_type(meta->type));
    printf("stripe_1kblocks     %u\n", meta->stripe_1kblocks);
    printf("timestamp_1         %04x/%02x/%02x %02x:%02x:%02x.%02x\n",
         *((u_int16_t *)meta->timestamp_1), meta->timestamp_1[2],
         meta->timestamp_1[3], meta->timestamp_1[5], meta->timestamp_1[4],
         meta->timestamp_1[7], meta->timestamp_1[6]);
    printf("stripe_sectors      %u\n", meta->stripe_sectors);
    printf("array_width         %u\n", meta->array_width);
    printf("disk_number         %u\n", meta->disk_number);
    printf("disk_sectors        %u\n", meta->disk_sectors);
    printf("=================================================\n");
}

static char *
ata_raid_jmicron_type(int type)
{
    static char buffer[16];

    switch (type) {
    case JM_T_RAID0:    return "RAID0";
    case JM_T_RAID1:    return "RAID1";
    case JM_T_RAID01:   return "RAID0+1";
    case JM_T_JBOD:     return "JBOD";
    case JM_T_RAID5:    return "RAID5";
    default:            sprintf(buffer, "UNKNOWN 0x%02x", type);
                  return buffer;
    }
}

static void
ata_raid_jmicron_print_meta(struct jmicron_raid_conf *meta)
{
    int i;

    printf("***** ATA JMicron Technology Corp Metadata ******\n");
    printf("signature           %.2s\n", meta->signature);
    printf("version             0x%04x\n", meta->version);
    printf("checksum            0x%04x\n", meta->checksum);
    printf("disk_id             0x%08x\n", meta->disk_id);
    printf("offset              0x%08x\n", meta->offset);
    printf("disk_sectors_low    0x%08x\n", meta->disk_sectors_low);
    printf("disk_sectors_high   0x%08x\n", meta->disk_sectors_high);
    printf("name                %.16s\n", meta->name);
    printf("type                %s\n", ata_raid_jmicron_type(meta->type));
    printf("stripe_shift        %d\n", meta->stripe_shift);
    printf("flags               0x%04x\n", meta->flags);
    printf("spare:\n");
    for (i=0; i < 2 && meta->spare[i]; i++)
      printf("    %d                  0x%08x\n", i, meta->spare[i]);
    printf("disks:\n");
    for (i=0; i < 8 && meta->disks[i]; i++)
      printf("    %d                  0x%08x\n", i, meta->disks[i]);
    printf("=================================================\n");
}

static char *
ata_raid_lsiv2_type(int type)
{
    static char buffer[16];

    switch (type) {
    case LSIV2_T_RAID0: return "RAID0";
    case LSIV2_T_RAID1: return "RAID1";
    case LSIV2_T_SPARE: return "SPARE";
    default:            sprintf(buffer, "UNKNOWN 0x%02x", type);
                  return buffer;
    }
}

static void
ata_raid_lsiv2_print_meta(struct lsiv2_raid_conf *meta)
{
    int i;

    printf("******* ATA LSILogic V2 MegaRAID Metadata *******\n");
    printf("lsi_id              <%s>\n", meta->lsi_id);
    printf("dummy_0             0x%02x\n", meta->dummy_0);
    printf("flags               0x%02x\n", meta->flags);
    printf("version             0x%04x\n", meta->version);
    printf("config_entries      0x%02x\n", meta->config_entries);
    printf("raid_count          0x%02x\n", meta->raid_count);
    printf("total_disks         0x%02x\n", meta->total_disks);
    printf("dummy_1             0x%02x\n", meta->dummy_1);
    printf("dummy_2             0x%04x\n", meta->dummy_2);
    for (i = 0; i < meta->config_entries; i++) {
      printf("    type             %s\n",
             ata_raid_lsiv2_type(meta->configs[i].raid.type));
      printf("    dummy_0          %02x\n", meta->configs[i].raid.dummy_0);
      printf("    stripe_sectors   %u\n",
             meta->configs[i].raid.stripe_sectors);
      printf("    array_width      %u\n",
             meta->configs[i].raid.array_width);
      printf("    disk_count       %u\n", meta->configs[i].raid.disk_count);
      printf("    config_offset    %u\n",
             meta->configs[i].raid.config_offset);
      printf("    dummy_1          %u\n", meta->configs[i].raid.dummy_1);
      printf("    flags            %02x\n", meta->configs[i].raid.flags);
      printf("    total_sectors    %u\n",
             meta->configs[i].raid.total_sectors);
    }
    printf("disk_number         0x%02x\n", meta->disk_number);
    printf("raid_number         0x%02x\n", meta->raid_number);
    printf("timestamp           0x%08x\n", meta->timestamp);
    printf("=================================================\n");
}

static char *
ata_raid_lsiv3_type(int type)
{
    static char buffer[16];

    switch (type) {
    case LSIV3_T_RAID0: return "RAID0";
    case LSIV3_T_RAID1: return "RAID1";
    default:            sprintf(buffer, "UNKNOWN 0x%02x", type);
                  return buffer;
    }
}

static void
ata_raid_lsiv3_print_meta(struct lsiv3_raid_conf *meta)
{
    int i;

    printf("******* ATA LSILogic V3 MegaRAID Metadata *******\n");
    printf("lsi_id              <%.6s>\n", meta->lsi_id);
    printf("dummy_0             0x%04x\n", meta->dummy_0);
    printf("version             0x%04x\n", meta->version);
    printf("dummy_0             0x%04x\n", meta->dummy_1);
    printf("RAID configs:\n");
    for (i = 0; i < 8; i++) {
      if (meta->raid[i].total_disks) {
          printf("%02d  stripe_pages       %u\n", i,
               meta->raid[i].stripe_pages);
          printf("%02d  type               %s\n", i,
               ata_raid_lsiv3_type(meta->raid[i].type));
          printf("%02d  total_disks        %u\n", i,
               meta->raid[i].total_disks);
          printf("%02d  array_width        %u\n", i,
               meta->raid[i].array_width);
          printf("%02d  sectors            %u\n", i, meta->raid[i].sectors);
          printf("%02d  offset             %u\n", i, meta->raid[i].offset);
          printf("%02d  device             0x%02x\n", i,
               meta->raid[i].device);
      }
    }
    printf("DISK configs:\n");
    for (i = 0; i < 6; i++) {
          if (meta->disk[i].disk_sectors) {
          printf("%02d  disk_sectors       %u\n", i,
               meta->disk[i].disk_sectors);
          printf("%02d  flags              0x%02x\n", i, meta->disk[i].flags);
      }
    }
    printf("device              0x%02x\n", meta->device);
    printf("timestamp           0x%08x\n", meta->timestamp);
    printf("checksum_1          0x%02x\n", meta->checksum_1);
    printf("=================================================\n");
}

static char *
ata_raid_nvidia_type(int type)
{
    static char buffer[16];

    switch (type) {
    case NV_T_SPAN:     return "SPAN";
    case NV_T_RAID0:    return "RAID0";
    case NV_T_RAID1:    return "RAID1";
    case NV_T_RAID3:    return "RAID3";
    case NV_T_RAID5:    return "RAID5";
    case NV_T_RAID01:   return "RAID0+1";
    default:            sprintf(buffer, "UNKNOWN 0x%02x", type);
                  return buffer;
    }
}

static void
ata_raid_nvidia_print_meta(struct nvidia_raid_conf *meta)
{
    printf("******** ATA nVidia MediaShield Metadata ********\n");
    printf("nvidia_id           <%.8s>\n", meta->nvidia_id);
    printf("config_size         %d\n", meta->config_size);
    printf("checksum            0x%08x\n", meta->checksum);
    printf("version             0x%04x\n", meta->version);
    printf("disk_number         %d\n", meta->disk_number);
    printf("dummy_0             0x%02x\n", meta->dummy_0);
    printf("total_sectors       %d\n", meta->total_sectors);
    printf("sectors_size        %d\n", meta->sector_size);
    printf("serial              %.16s\n", meta->serial);
    printf("revision            %.4s\n", meta->revision);
    printf("dummy_1             0x%08x\n", meta->dummy_1);
    printf("magic_0             0x%08x\n", meta->magic_0);
    printf("magic_1             0x%016jx\n", meta->magic_1);
    printf("magic_2             0x%016jx\n", meta->magic_2);
    printf("flags               0x%02x\n", meta->flags);
    printf("array_width         %d\n", meta->array_width);
    printf("total_disks         %d\n", meta->total_disks);
    printf("dummy_2             0x%02x\n", meta->dummy_2);
    printf("type                %s\n", ata_raid_nvidia_type(meta->type));
    printf("dummy_3             0x%04x\n", meta->dummy_3);
    printf("stripe_sectors      %d\n", meta->stripe_sectors);
    printf("stripe_bytes        %d\n", meta->stripe_bytes);
    printf("stripe_shift        %d\n", meta->stripe_shift);
    printf("stripe_mask         0x%08x\n", meta->stripe_mask);
    printf("stripe_sizesectors  %d\n", meta->stripe_sizesectors);
    printf("stripe_sizebytes    %d\n", meta->stripe_sizebytes);
    printf("rebuild_lba         %d\n", meta->rebuild_lba);
    printf("dummy_4             0x%08x\n", meta->dummy_4);
    printf("dummy_5             0x%08x\n", meta->dummy_5);
    printf("status              0x%08x\n", meta->status);
    printf("=================================================\n");
}

static char *
ata_raid_promise_type(int type)
{
    static char buffer[16];

    switch (type) {
    case PR_T_RAID0:    return "RAID0";
    case PR_T_RAID1:    return "RAID1";
    case PR_T_RAID3:    return "RAID3";
    case PR_T_RAID5:    return "RAID5";
    case PR_T_SPAN:     return "SPAN";
    default:            sprintf(buffer, "UNKNOWN 0x%02x", type);
                  return buffer;
    }
}

static void
ata_raid_promise_print_meta(struct promise_raid_conf *meta)
{
    int i;

    printf("********* ATA Promise FastTrak Metadata *********\n");
    printf("promise_id          <%s>\n", meta->promise_id);
    printf("dummy_0             0x%08x\n", meta->dummy_0);
    printf("magic_0             0x%016jx\n", meta->magic_0);
    printf("magic_1             0x%04x\n", meta->magic_1);
    printf("magic_2             0x%08x\n", meta->magic_2);
    printf("integrity           0x%08x %b\n", meta->raid.integrity,
            meta->raid.integrity, "\20\10VALID\n" );
    printf("flags               0x%02x %b\n",
         meta->raid.flags, meta->raid.flags,
         "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
         "\3ASSIGNED\2ONLINE\1VALID\n");
    printf("disk_number         %d\n", meta->raid.disk_number);
    printf("channel             0x%02x\n", meta->raid.channel);
    printf("device              0x%02x\n", meta->raid.device);
    printf("magic_0             0x%016jx\n", meta->raid.magic_0);
    printf("disk_offset         %u\n", meta->raid.disk_offset);
    printf("disk_sectors        %u\n", meta->raid.disk_sectors);
    printf("rebuild_lba         0x%08x\n", meta->raid.rebuild_lba);
    printf("generation          0x%04x\n", meta->raid.generation);
    printf("status              0x%02x %b\n",
          meta->raid.status, meta->raid.status,
         "\20\6MARKED\5DEGRADED\4READY\3INITED\2ONLINE\1VALID\n");
    printf("type                %s\n", ata_raid_promise_type(meta->raid.type));
    printf("total_disks         %u\n", meta->raid.total_disks);
    printf("stripe_shift        %u\n", meta->raid.stripe_shift);
    printf("array_width         %u\n", meta->raid.array_width);
    printf("array_number        %u\n", meta->raid.array_number);
    printf("total_sectors       %u\n", meta->raid.total_sectors);
    printf("cylinders           %u\n", meta->raid.cylinders);
    printf("heads               %u\n", meta->raid.heads);
    printf("sectors             %u\n", meta->raid.sectors);
    printf("magic_1             0x%016jx\n", meta->raid.magic_1);
    printf("DISK#   flags dummy_0 channel device  magic_0\n");
    for (i = 0; i < 8; i++) {
      printf("  %d    %b    0x%02x  0x%02x  0x%02x  ",
             i, meta->raid.disk[i].flags,
             "\20\10READY\7DOWN\6REDIR\5DUPLICATE\4SPARE"
             "\3ASSIGNED\2ONLINE\1VALID\n", meta->raid.disk[i].dummy_0,
             meta->raid.disk[i].channel, meta->raid.disk[i].device);
      printf("0x%016jx\n", meta->raid.disk[i].magic_0);
    }
    printf("checksum            0x%08x\n", meta->checksum);
    printf("=================================================\n");
}

static char *
ata_raid_sii_type(int type)
{
    static char buffer[16];

    switch (type) {
    case SII_T_RAID0:   return "RAID0";
    case SII_T_RAID1:   return "RAID1";
    case SII_T_RAID01:  return "RAID0+1";
    case SII_T_SPARE:   return "SPARE";
    default:            sprintf(buffer, "UNKNOWN 0x%02x", type);
                  return buffer;
    }
}

static void
ata_raid_sii_print_meta(struct sii_raid_conf *meta)
{
    printf("******* ATA Silicon Image Medley Metadata *******\n");
    printf("total_sectors       %ju\n", meta->total_sectors);
    printf("dummy_0             0x%04x\n", meta->dummy_0);
    printf("dummy_1             0x%04x\n", meta->dummy_1);
    printf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
    printf("version_minor       0x%04x\n", meta->version_minor);
    printf("version_major       0x%04x\n", meta->version_major);
    printf("timestamp           20%02x/%02x/%02x %02x:%02x:%02x\n",
         meta->timestamp[5], meta->timestamp[4], meta->timestamp[3],
         meta->timestamp[2], meta->timestamp[1], meta->timestamp[0]);
    printf("stripe_sectors      %u\n", meta->stripe_sectors);
    printf("dummy_2             0x%04x\n", meta->dummy_2);
    printf("disk_number         %u\n", meta->disk_number);
    printf("type                %s\n", ata_raid_sii_type(meta->type));
    printf("raid0_disks         %u\n", meta->raid0_disks);
    printf("raid0_ident         %u\n", meta->raid0_ident);
    printf("raid1_disks         %u\n", meta->raid1_disks);
    printf("raid1_ident         %u\n", meta->raid1_ident);
    printf("rebuild_lba         %ju\n", meta->rebuild_lba);
    printf("generation          0x%08x\n", meta->generation);
    printf("status              0x%02x %b\n",
          meta->status, meta->status,
         "\20\1READY\n");
    printf("base_raid1_position %02x\n", meta->base_raid1_position);
    printf("base_raid0_position %02x\n", meta->base_raid0_position);
    printf("position            %02x\n", meta->position);
    printf("dummy_3             %04x\n", meta->dummy_3);
    printf("name                <%.16s>\n", meta->name);
    printf("checksum_0          0x%04x\n", meta->checksum_0);
    printf("checksum_1          0x%04x\n", meta->checksum_1);
    printf("=================================================\n");
}

static char *
ata_raid_sis_type(int type)
{
    static char buffer[16];

    switch (type) {
    case SIS_T_JBOD:    return "JBOD";
    case SIS_T_RAID0:   return "RAID0";
    case SIS_T_RAID1:   return "RAID1";
    default:            sprintf(buffer, "UNKNOWN 0x%02x", type);
                  return buffer;
    }
}

static void
ata_raid_sis_print_meta(struct sis_raid_conf *meta)
{
    printf("**** ATA Silicon Integrated Systems Metadata ****\n");
    printf("magic               0x%04x\n", meta->magic);
    printf("disks               0x%02x\n", meta->disks);
    printf("type                %s\n",
         ata_raid_sis_type(meta->type_total_disks & SIS_T_MASK));
    printf("total_disks         %u\n", meta->type_total_disks & SIS_D_MASK);
    printf("dummy_0             0x%08x\n", meta->dummy_0);
    printf("controller_pci_id   0x%08x\n", meta->controller_pci_id);
    printf("stripe_sectors      %u\n", meta->stripe_sectors);
    printf("dummy_1             0x%04x\n", meta->dummy_1);
    printf("timestamp           0x%08x\n", meta->timestamp);
    printf("model               %.40s\n", meta->model);
    printf("disk_number         %u\n", meta->disk_number);
    printf("dummy_2             0x%02x 0x%02x 0x%02x\n",
         meta->dummy_2[0], meta->dummy_2[1], meta->dummy_2[2]);
    printf("=================================================\n");
}

static char *
ata_raid_via_type(int type)
{
    static char buffer[16];

    switch (type) {
    case VIA_T_RAID0:   return "RAID0";
    case VIA_T_RAID1:   return "RAID1";
    case VIA_T_RAID5:   return "RAID5";
    case VIA_T_RAID01:  return "RAID0+1";
    case VIA_T_SPAN:    return "SPAN";
    default:            sprintf(buffer, "UNKNOWN 0x%02x", type);
                  return buffer;
    }
}

static void
ata_raid_via_print_meta(struct via_raid_conf *meta)
{
    int i;
  
    printf("*************** ATA VIA Metadata ****************\n");
    printf("magic               0x%02x\n", meta->magic);
    printf("dummy_0             0x%02x\n", meta->dummy_0);
    printf("type                %s\n",
         ata_raid_via_type(meta->type & VIA_T_MASK));
    printf("bootable            %d\n", meta->type & VIA_T_BOOTABLE);
    printf("unknown             %d\n", meta->type & VIA_T_UNKNOWN);
    printf("disk_index          0x%02x\n", meta->disk_index);
    printf("stripe_layout       0x%02x\n", meta->stripe_layout);
    printf(" stripe_disks       %d\n", meta->stripe_layout & VIA_L_DISKS);
    printf(" stripe_sectors     %d\n",
         0x08 << ((meta->stripe_layout & VIA_L_MASK) >> VIA_L_SHIFT));
    printf("disk_sectors        %ju\n", meta->disk_sectors);
    printf("disk_id             0x%08x\n", meta->disk_id);
    printf("DISK#   disk_id\n");
    for (i = 0; i < 8; i++) {
      if (meta->disks[i])
          printf("  %d    0x%08x\n", i, meta->disks[i]);
    }    
    printf("checksum            0x%02x\n", meta->checksum);
    printf("=================================================\n");
}

Generated by  Doxygen 1.6.0   Back to index