Logo Search packages:      
Sourcecode: kfreebsd-6 version File versions  Download package

vfs_subr.c

/*-
 * Copyright (c) 1989, 1993
 *    The Regents of the University of California.  All rights reserved.
 * (c) UNIX System Laboratories, Inc.
 * All or some portions of this file are derived from material licensed
 * to the University of California by American Telephone and Telegraph
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
 * the permission of UNIX System Laboratories, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *    @(#)vfs_subr.c    8.31 (Berkeley) 5/26/95
 */

/*
 * External virtual filesystem routines
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD: src/sys/kern/vfs_subr.c,v 1.635.2.26 2007/05/24 16:09:38 des Exp $");

#include "opt_ddb.h"
#include "opt_mac.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/conf.h>
#include <sys/dirent.h>
#include <sys/event.h>
#include <sys/eventhandler.h>
#include <sys/extattr.h>
#include <sys/file.h>
#include <sys/fcntl.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/kthread.h>
#include <sys/mac.h>
#include <sys/malloc.h>
#include <sys/mount.h>
#include <sys/namei.h>
#include <sys/reboot.h>
#include <sys/sleepqueue.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/syslog.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>

#include <machine/stdarg.h>

#include <vm/vm.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_page.h>
#include <vm/vm_kern.h>
#include <vm/uma.h>

#ifdef DDB
#include <ddb/ddb.h>
#endif

static MALLOC_DEFINE(M_NETADDR, "Export Host", "Export host address structure");

static void delmntque(struct vnode *vp);
static void insmntque(struct vnode *vp, struct mount *mp);
static int  flushbuflist(struct bufv *bufv, int flags, struct bufobj *bo,
                int slpflag, int slptimeo);
static void syncer_shutdown(void *arg, int howto);
static int  vtryrecycle(struct vnode *vp);
static void vbusy(struct vnode *vp);
static void vinactive(struct vnode *, struct thread *);
static void v_incr_usecount(struct vnode *);
static void v_decr_usecount(struct vnode *);
static void v_decr_useonly(struct vnode *);
static void v_upgrade_usecount(struct vnode *);
static void vfree(struct vnode *);
static void vnlru_free(int);
static void vdestroy(struct vnode *);
static void vgonel(struct vnode *);
static void vfs_knllock(void *arg);
static void vfs_knlunlock(void *arg);
static int  vfs_knllocked(void *arg);


/*
 * Enable Giant pushdown based on whether or not the vm is mpsafe in this
 * build.  Without mpsafevm the buffer cache can not run Giant free.
 */
#if defined(__alpha__) || defined(__amd64__) || defined(__i386__) || \
      defined(__sparc64__)
int mpsafe_vfs = 1;
#else
int mpsafe_vfs;
#endif
TUNABLE_INT("debug.mpsafevfs", &mpsafe_vfs);
SYSCTL_INT(_debug, OID_AUTO, mpsafevfs, CTLFLAG_RD, &mpsafe_vfs, 0,
    "MPSAFE VFS");

/*
 * Number of vnodes in existence.  Increased whenever getnewvnode()
 * allocates a new vnode, decreased on vdestroy() called on VI_DOOMed
 * vnode.
 */
static unsigned long    numvnodes;

SYSCTL_LONG(_vfs, OID_AUTO, numvnodes, CTLFLAG_RD, &numvnodes, 0, "");

/*
 * Conversion tables for conversion from vnode types to inode formats
 * and back.
 */
enum vtype iftovt_tab[16] = {
      VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
      VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
};
int vttoif_tab[10] = {
      0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
      S_IFSOCK, S_IFIFO, S_IFMT, S_IFMT
};

/*
 * List of vnodes that are ready for recycling.
 */
static TAILQ_HEAD(freelst, vnode) vnode_free_list;

/*
 * Free vnode target.  Free vnodes may simply be files which have been stat'd
 * but not read.  This is somewhat common, and a small cache of such files
 * should be kept to avoid recreation costs.
 */
static u_long wantfreevnodes;
SYSCTL_LONG(_vfs, OID_AUTO, wantfreevnodes, CTLFLAG_RW, &wantfreevnodes, 0, "");
/* Number of vnodes in the free list. */
static u_long freevnodes;
SYSCTL_LONG(_vfs, OID_AUTO, freevnodes, CTLFLAG_RD, &freevnodes, 0, "");

/*
 * Various variables used for debugging the new implementation of
 * reassignbuf().
 * XXX these are probably of (very) limited utility now.
 */
static int reassignbufcalls;
SYSCTL_INT(_vfs, OID_AUTO, reassignbufcalls, CTLFLAG_RW, &reassignbufcalls, 0, "");

/*
 * Cache for the mount type id assigned to NFS.  This is used for
 * special checks in nfs/nfs_nqlease.c and vm/vnode_pager.c.
 */
int   nfs_mount_type = -1;

/* To keep more than one thread at a time from running vfs_getnewfsid */
static struct mtx mntid_mtx;

/*
 * Lock for any access to the following:
 *    vnode_free_list
 *    numvnodes
 *    freevnodes
 */
static struct mtx vnode_free_list_mtx;

/* Publicly exported FS */
struct nfs_public nfs_pub;

/* Zone for allocation of new vnodes - used exclusively by getnewvnode() */
static uma_zone_t vnode_zone;
static uma_zone_t vnodepoll_zone;

/* Set to 1 to print out reclaim of active vnodes */
int   prtactive;

/*
 * The workitem queue.
 *
 * It is useful to delay writes of file data and filesystem metadata
 * for tens of seconds so that quickly created and deleted files need
 * not waste disk bandwidth being created and removed. To realize this,
 * we append vnodes to a "workitem" queue. When running with a soft
 * updates implementation, most pending metadata dependencies should
 * not wait for more than a few seconds. Thus, mounted on block devices
 * are delayed only about a half the time that file data is delayed.
 * Similarly, directory updates are more critical, so are only delayed
 * about a third the time that file data is delayed. Thus, there are
 * SYNCER_MAXDELAY queues that are processed round-robin at a rate of
 * one each second (driven off the filesystem syncer process). The
 * syncer_delayno variable indicates the next queue that is to be processed.
 * Items that need to be processed soon are placed in this queue:
 *
 *    syncer_workitem_pending[syncer_delayno]
 *
 * A delay of fifteen seconds is done by placing the request fifteen
 * entries later in the queue:
 *
 *    syncer_workitem_pending[(syncer_delayno + 15) & syncer_mask]
 *
 */
static int syncer_delayno;
static long syncer_mask;
LIST_HEAD(synclist, bufobj);
static struct synclist *syncer_workitem_pending;
/*
 * The sync_mtx protects:
 *    bo->bo_synclist
 *    sync_vnode_count
 *    syncer_delayno
 *    syncer_state
 *    syncer_workitem_pending
 *    syncer_worklist_len
 *    rushjob
 */
static struct mtx sync_mtx;

#define SYNCER_MAXDELAY       32
static int syncer_maxdelay = SYNCER_MAXDELAY;   /* maximum delay time */
static int syncdelay = 30;          /* max time to delay syncing data */
static int filedelay = 30;          /* time to delay syncing files */
SYSCTL_INT(_kern, OID_AUTO, filedelay, CTLFLAG_RW, &filedelay, 0, "");
static int dirdelay = 29;           /* time to delay syncing directories */
SYSCTL_INT(_kern, OID_AUTO, dirdelay, CTLFLAG_RW, &dirdelay, 0, "");
static int metadelay = 28;          /* time to delay syncing metadata */
SYSCTL_INT(_kern, OID_AUTO, metadelay, CTLFLAG_RW, &metadelay, 0, "");
static int rushjob;           /* number of slots to run ASAP */
static int stat_rush_requests;      /* number of times I/O speeded up */
SYSCTL_INT(_debug, OID_AUTO, rush_requests, CTLFLAG_RW, &stat_rush_requests, 0, "");

/*
 * When shutting down the syncer, run it at four times normal speed.
 */
#define SYNCER_SHUTDOWN_SPEEDUP           4
static int sync_vnode_count;
static int syncer_worklist_len;
static enum { SYNCER_RUNNING, SYNCER_SHUTTING_DOWN, SYNCER_FINAL_DELAY }
    syncer_state;

/*
 * Number of vnodes we want to exist at any one time.  This is mostly used
 * to size hash tables in vnode-related code.  It is normally not used in
 * getnewvnode(), as wantfreevnodes is normally nonzero.)
 *
 * XXX desiredvnodes is historical cruft and should not exist.
 */
int desiredvnodes;
SYSCTL_INT(_kern, KERN_MAXVNODES, maxvnodes, CTLFLAG_RW,
    &desiredvnodes, 0, "Maximum number of vnodes");
SYSCTL_INT(_kern, OID_AUTO, minvnodes, CTLFLAG_RW,
    &wantfreevnodes, 0, "Minimum number of vnodes (legacy)");
static int vnlru_nowhere;
SYSCTL_INT(_debug, OID_AUTO, vnlru_nowhere, CTLFLAG_RW,
    &vnlru_nowhere, 0, "Number of times the vnlru process ran without success");

/*
 * Macros to control when a vnode is freed and recycled.  All require
 * the vnode interlock.
 */
#define VCANRECYCLE(vp) (((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
#define VSHOULDFREE(vp) (!((vp)->v_iflag & VI_FREE) && !(vp)->v_holdcnt)
#define VSHOULDBUSY(vp) (((vp)->v_iflag & VI_FREE) && (vp)->v_holdcnt)


/*
 * Initialize the vnode management data structures.
 */
#ifndef     MAXVNODES_MAX
#define     MAXVNODES_MAX     100000
#endif
static void
vntblinit(void *dummy __unused)
{

      /*
       * Desiredvnodes is a function of the physical memory size and
       * the kernel's heap size.  Specifically, desiredvnodes scales
       * in proportion to the physical memory size until two fifths
       * of the kernel's heap size is consumed by vnodes and vm
       * objects.
       */
      desiredvnodes = min(maxproc + cnt.v_page_count / 4, 2 * vm_kmem_size /
          (5 * (sizeof(struct vm_object) + sizeof(struct vnode))));
      if (desiredvnodes > MAXVNODES_MAX) {
            if (bootverbose)
                  printf("Reducing kern.maxvnodes %d -> %d\n",
                      desiredvnodes, MAXVNODES_MAX);
            desiredvnodes = MAXVNODES_MAX;
      }
      wantfreevnodes = desiredvnodes / 4; 
      mtx_init(&mntid_mtx, "mntid", NULL, MTX_DEF);
      TAILQ_INIT(&vnode_free_list);
      mtx_init(&vnode_free_list_mtx, "vnode_free_list", NULL, MTX_DEF);
      vnode_zone = uma_zcreate("VNODE", sizeof (struct vnode), NULL, NULL,
          NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
      vnodepoll_zone = uma_zcreate("VNODEPOLL", sizeof (struct vpollinfo),
            NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE);
      /*
       * Initialize the filesystem syncer.
       */
      syncer_workitem_pending = hashinit(syncer_maxdelay, M_VNODE,
            &syncer_mask);
      syncer_maxdelay = syncer_mask + 1;
      mtx_init(&sync_mtx, "Syncer mtx", NULL, MTX_DEF);
}
SYSINIT(vfs, SI_SUB_VFS, SI_ORDER_FIRST, vntblinit, NULL)


/*
 * Mark a mount point as busy. Used to synchronize access and to delay
 * unmounting. Interlock is not released on failure.
 */
int
vfs_busy(mp, flags, interlkp, td)
      struct mount *mp;
      int flags;
      struct mtx *interlkp;
      struct thread *td;
{
      int lkflags;

      MNT_ILOCK(mp);
      MNT_REF(mp);
      if (mp->mnt_kern_flag & MNTK_UNMOUNT) {
            if (flags & LK_NOWAIT) {
                  MNT_REL(mp);
                  MNT_IUNLOCK(mp);
                  return (ENOENT);
            }
            if (interlkp)
                  mtx_unlock(interlkp);
            mp->mnt_kern_flag |= MNTK_MWAIT;
            /*
             * Since all busy locks are shared except the exclusive
             * lock granted when unmounting, the only place that a
             * wakeup needs to be done is at the release of the
             * exclusive lock at the end of dounmount.
             */
            msleep(mp, MNT_MTX(mp), PVFS, "vfs_busy", 0);
            MNT_REL(mp);
            MNT_IUNLOCK(mp);
            if (interlkp)
                  mtx_lock(interlkp);
            return (ENOENT);
      }
      if (interlkp)
            mtx_unlock(interlkp);
      lkflags = LK_SHARED | LK_INTERLOCK;
      if (lockmgr(&mp->mnt_lock, lkflags, MNT_MTX(mp), td))
            panic("vfs_busy: unexpected lock failure");
      return (0);
}

/*
 * Free a busy filesystem.
 */
void
vfs_unbusy(mp, td)
      struct mount *mp;
      struct thread *td;
{

      lockmgr(&mp->mnt_lock, LK_RELEASE, NULL, td);
      vfs_rel(mp);
}

/*
 * Lookup a mount point by filesystem identifier.
 */
struct mount *
vfs_getvfs(fsid)
      fsid_t *fsid;
{
      struct mount *mp;

      mtx_lock(&mountlist_mtx);
      TAILQ_FOREACH(mp, &mountlist, mnt_list) {
            if (mp->mnt_stat.f_fsid.val[0] == fsid->val[0] &&
                mp->mnt_stat.f_fsid.val[1] == fsid->val[1]) {
                  vfs_ref(mp);
                  mtx_unlock(&mountlist_mtx);
                  return (mp);
            }
      }
      mtx_unlock(&mountlist_mtx);
      return ((struct mount *) 0);
}

/*
 * Check if a user can access priveledged mount options.
 */
int
vfs_suser(struct mount *mp, struct thread *td)
{
      int error;

      if ((mp->mnt_flag & MNT_USER) == 0 ||
          mp->mnt_cred->cr_uid != td->td_ucred->cr_uid) {
            if ((error = suser(td)) != 0)
                  return (error);
      }
      return (0);
}

/*
 * Get a new unique fsid.  Try to make its val[0] unique, since this value
 * will be used to create fake device numbers for stat().  Also try (but
 * not so hard) make its val[0] unique mod 2^16, since some emulators only
 * support 16-bit device numbers.  We end up with unique val[0]'s for the
 * first 2^16 calls and unique val[0]'s mod 2^16 for the first 2^8 calls.
 *
 * Keep in mind that several mounts may be running in parallel.  Starting
 * the search one past where the previous search terminated is both a
 * micro-optimization and a defense against returning the same fsid to
 * different mounts.
 */
void
vfs_getnewfsid(mp)
      struct mount *mp;
{
      static u_int16_t mntid_base;
      struct mount *nmp;
      fsid_t tfsid;
      int mtype;

      mtx_lock(&mntid_mtx);
      mtype = mp->mnt_vfc->vfc_typenum;
      tfsid.val[1] = mtype;
      mtype = (mtype & 0xFF) << 24;
      for (;;) {
            tfsid.val[0] = makedev(255,
                mtype | ((mntid_base & 0xFF00) << 8) | (mntid_base & 0xFF));
            mntid_base++;
            if ((nmp = vfs_getvfs(&tfsid)) == NULL)
                  break;
            vfs_rel(nmp);
      }
      mp->mnt_stat.f_fsid.val[0] = tfsid.val[0];
      mp->mnt_stat.f_fsid.val[1] = tfsid.val[1];
      mtx_unlock(&mntid_mtx);
}

/*
 * Knob to control the precision of file timestamps:
 *
 *   0 = seconds only; nanoseconds zeroed.
 *   1 = seconds and nanoseconds, accurate within 1/HZ.
 *   2 = seconds and nanoseconds, truncated to microseconds.
 * >=3 = seconds and nanoseconds, maximum precision.
 */
enum { TSP_SEC, TSP_HZ, TSP_USEC, TSP_NSEC };

static int timestamp_precision = TSP_SEC;
SYSCTL_INT(_vfs, OID_AUTO, timestamp_precision, CTLFLAG_RW,
    &timestamp_precision, 0, "");

/*
 * Get a current timestamp.
 */
void
vfs_timestamp(tsp)
      struct timespec *tsp;
{
      struct timeval tv;

      switch (timestamp_precision) {
      case TSP_SEC:
            tsp->tv_sec = time_second;
            tsp->tv_nsec = 0;
            break;
      case TSP_HZ:
            getnanotime(tsp);
            break;
      case TSP_USEC:
            microtime(&tv);
            TIMEVAL_TO_TIMESPEC(&tv, tsp);
            break;
      case TSP_NSEC:
      default:
            nanotime(tsp);
            break;
      }
}

/*
 * Set vnode attributes to VNOVAL
 */
void
vattr_null(vap)
      struct vattr *vap;
{

      vap->va_type = VNON;
      vap->va_size = VNOVAL;
      vap->va_bytes = VNOVAL;
      vap->va_mode = VNOVAL;
      vap->va_nlink = VNOVAL;
      vap->va_uid = VNOVAL;
      vap->va_gid = VNOVAL;
      vap->va_fsid = VNOVAL;
      vap->va_fileid = VNOVAL;
      vap->va_blocksize = VNOVAL;
      vap->va_rdev = VNOVAL;
      vap->va_atime.tv_sec = VNOVAL;
      vap->va_atime.tv_nsec = VNOVAL;
      vap->va_mtime.tv_sec = VNOVAL;
      vap->va_mtime.tv_nsec = VNOVAL;
      vap->va_ctime.tv_sec = VNOVAL;
      vap->va_ctime.tv_nsec = VNOVAL;
      vap->va_birthtime.tv_sec = VNOVAL;
      vap->va_birthtime.tv_nsec = VNOVAL;
      vap->va_flags = VNOVAL;
      vap->va_gen = VNOVAL;
      vap->va_vaflags = 0;
}

/*
 * This routine is called when we have too many vnodes.  It attempts
 * to free <count> vnodes and will potentially free vnodes that still
 * have VM backing store (VM backing store is typically the cause
 * of a vnode blowout so we want to do this).  Therefore, this operation
 * is not considered cheap.
 *
 * A number of conditions may prevent a vnode from being reclaimed.
 * the buffer cache may have references on the vnode, a directory
 * vnode may still have references due to the namei cache representing
 * underlying files, or the vnode may be in active use.   It is not
 * desireable to reuse such vnodes.  These conditions may cause the
 * number of vnodes to reach some minimum value regardless of what
 * you set kern.maxvnodes to.  Do not set kern.maxvnodes too low.
 */
static int
vlrureclaim(struct mount *mp)
{
      struct thread *td;
      struct vnode *vp;
      int done;
      int trigger;
      int usevnodes;
      int count;

      /*
       * Calculate the trigger point, don't allow user
       * screwups to blow us up.   This prevents us from
       * recycling vnodes with lots of resident pages.  We
       * aren't trying to free memory, we are trying to
       * free vnodes.
       */
      usevnodes = desiredvnodes;
      if (usevnodes <= 0)
            usevnodes = 1;
      trigger = cnt.v_page_count * 2 / usevnodes;
      done = 0;
      td = curthread;
      vn_start_write(NULL, &mp, V_WAIT);
      MNT_ILOCK(mp);
      count = mp->mnt_nvnodelistsize / 10 + 1;
      while (count != 0) {
            vp = TAILQ_FIRST(&mp->mnt_nvnodelist);
            while (vp != NULL && vp->v_type == VMARKER)
                  vp = TAILQ_NEXT(vp, v_nmntvnodes);
            if (vp == NULL)
                  break;
            TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
            TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
            --count;
            if (!VI_TRYLOCK(vp))
                  goto next_iter;
            /*
             * If it's been deconstructed already, it's still
             * referenced, or it exceeds the trigger, skip it.
             */
            if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
                (vp->v_iflag & VI_DOOMED) != 0 || (vp->v_object != NULL &&
                vp->v_object->resident_page_count > trigger)) {
                  VI_UNLOCK(vp);
                  goto next_iter;
            }
            MNT_IUNLOCK(mp);
            vholdl(vp);
            if (VOP_LOCK(vp, LK_INTERLOCK|LK_EXCLUSIVE|LK_NOWAIT, td)) {
                  vdrop(vp);
                  goto next_iter_mntunlocked;
            }
            VI_LOCK(vp);
            /*
             * v_usecount may have been bumped after VOP_LOCK() dropped
             * the vnode interlock and before it was locked again.
             *
             * It is not necessary to recheck VI_DOOMED because it can
             * only be set by another thread that holds both the vnode
             * lock and vnode interlock.  If another thread has the
             * vnode lock before we get to VOP_LOCK() and obtains the
             * vnode interlock after VOP_LOCK() drops the vnode
             * interlock, the other thread will be unable to drop the
             * vnode lock before our VOP_LOCK() call fails.
             */
            if (vp->v_usecount || !LIST_EMPTY(&(vp)->v_cache_src) ||
                (vp->v_object != NULL && 
                vp->v_object->resident_page_count > trigger)) {
                  VOP_UNLOCK(vp, LK_INTERLOCK, td);
                  goto next_iter_mntunlocked;
            }
            KASSERT((vp->v_iflag & VI_DOOMED) == 0,
                ("VI_DOOMED unexpectedly detected in vlrureclaim()"));
            vgonel(vp);
            VOP_UNLOCK(vp, 0, td);
            vdropl(vp);
            done++;
next_iter_mntunlocked:
            if ((count % 256) != 0)
                  goto relock_mnt;
            goto yield;
next_iter:
            if ((count % 256) != 0)
                  continue;
            MNT_IUNLOCK(mp);
yield:
            uio_yield();
relock_mnt:
            MNT_ILOCK(mp);
      }
      MNT_IUNLOCK(mp);
      vn_finished_write(mp);
      return done;
}

/*
 * Attempt to keep the free list at wantfreevnodes length.
 */
static void
vnlru_free(int count)
{
      struct vnode *vp;
      int vfslocked;

      mtx_assert(&vnode_free_list_mtx, MA_OWNED);
      for (; count > 0; count--) {
            vp = TAILQ_FIRST(&vnode_free_list);
            /*
             * The list can be modified while the free_list_mtx
             * has been dropped and vp could be NULL here.
             */
            if (!vp)
                  break;
            VNASSERT(vp->v_op != NULL, vp,
                ("vnlru_free: vnode already reclaimed."));
            TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
            /*
             * Don't recycle if we can't get the interlock.
             */
            if (!VI_TRYLOCK(vp)) {
                  TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
                  continue;
            }
            VNASSERT(VCANRECYCLE(vp), vp,
                ("vp inconsistent on freelist"));
            freevnodes--;
            vp->v_iflag &= ~VI_FREE;
            vholdl(vp);
            mtx_unlock(&vnode_free_list_mtx);
            VI_UNLOCK(vp);
            vfslocked = VFS_LOCK_GIANT(vp->v_mount);
            vtryrecycle(vp);
            VFS_UNLOCK_GIANT(vfslocked);
            /*
             * If the recycled succeeded this vdrop will actually free
             * the vnode.  If not it will simply place it back on
             * the free list.
             */
            vdrop(vp);
            mtx_lock(&vnode_free_list_mtx);
      }
}
/*
 * Attempt to recycle vnodes in a context that is always safe to block.
 * Calling vlrurecycle() from the bowels of filesystem code has some
 * interesting deadlock problems.
 */
static struct proc *vnlruproc;
static int vnlruproc_sig;

static void
vnlru_proc(void)
{
      struct mount *mp, *nmp;
      int done;
      struct proc *p = vnlruproc;
      struct thread *td = FIRST_THREAD_IN_PROC(p);

      mtx_lock(&Giant);

      EVENTHANDLER_REGISTER(shutdown_pre_sync, kproc_shutdown, p,
          SHUTDOWN_PRI_FIRST);

      for (;;) {
            kthread_suspend_check(p);
            mtx_lock(&vnode_free_list_mtx);
            if (freevnodes > wantfreevnodes)
                  vnlru_free(freevnodes - wantfreevnodes);
            if (numvnodes <= desiredvnodes * 9 / 10) {
                  vnlruproc_sig = 0;
                  wakeup(&vnlruproc_sig);
                  msleep(vnlruproc, &vnode_free_list_mtx,
                      PVFS|PDROP, "vlruwt", hz);
                  continue;
            }
            mtx_unlock(&vnode_free_list_mtx);
            done = 0;
            mtx_lock(&mountlist_mtx);
            for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
                  int vfsunlocked;
                  if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td)) {
                        nmp = TAILQ_NEXT(mp, mnt_list);
                        continue;
                  }
                  if (!VFS_NEEDSGIANT(mp)) {
                        mtx_unlock(&Giant);
                        vfsunlocked = 1;
                  } else
                        vfsunlocked = 0;
                  done += vlrureclaim(mp);
                  if (vfsunlocked)
                        mtx_lock(&Giant);
                  mtx_lock(&mountlist_mtx);
                  nmp = TAILQ_NEXT(mp, mnt_list);
                  vfs_unbusy(mp, td);
            }
            mtx_unlock(&mountlist_mtx);
            if (done == 0) {
#if 0
                  /* These messages are temporary debugging aids */
                  if (vnlru_nowhere < 5)
                        printf("vnlru process getting nowhere..\n");
                  else if (vnlru_nowhere == 5)
                        printf("vnlru process messages stopped.\n");
#endif
                  vnlru_nowhere++;
                  tsleep(vnlruproc, PPAUSE, "vlrup", hz * 3);
            } else 
                  uio_yield();
      }
}

static struct kproc_desc vnlru_kp = {
      "vnlru",
      vnlru_proc,
      &vnlruproc
};
SYSINIT(vnlru, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &vnlru_kp)

/*
 * Routines having to do with the management of the vnode table.
 */

static void
vdestroy(struct vnode *vp)
{
      struct bufobj *bo;

      CTR1(KTR_VFS, "vdestroy vp %p", vp);
      mtx_lock(&vnode_free_list_mtx);
      numvnodes--;
      mtx_unlock(&vnode_free_list_mtx);
      bo = &vp->v_bufobj;
      VNASSERT((vp->v_iflag & VI_FREE) == 0, vp,
          ("cleaned vnode still on the free list."));
      VNASSERT(vp->v_data == NULL, vp, ("cleaned vnode isn't"));
      VNASSERT(vp->v_holdcnt == 0, vp, ("Non-zero hold count"));
      VNASSERT(vp->v_usecount == 0, vp, ("Non-zero use count"));
      VNASSERT(vp->v_writecount == 0, vp, ("Non-zero write count"));
      VNASSERT(bo->bo_numoutput == 0, vp, ("Clean vnode has pending I/O's"));
      VNASSERT(bo->bo_clean.bv_cnt == 0, vp, ("cleanbufcnt not 0"));
      VNASSERT(bo->bo_clean.bv_root == NULL, vp, ("cleanblkroot not NULL"));
      VNASSERT(bo->bo_dirty.bv_cnt == 0, vp, ("dirtybufcnt not 0"));
      VNASSERT(bo->bo_dirty.bv_root == NULL, vp, ("dirtyblkroot not NULL"));
      VNASSERT(TAILQ_EMPTY(&vp->v_cache_dst), vp, ("vp has namecache dst"));
      VNASSERT(LIST_EMPTY(&vp->v_cache_src), vp, ("vp has namecache src"));
      VI_UNLOCK(vp);
#ifdef MAC
      mac_destroy_vnode(vp);
#endif
      if (vp->v_pollinfo != NULL) {
            knlist_destroy(&vp->v_pollinfo->vpi_selinfo.si_note);
            mtx_destroy(&vp->v_pollinfo->vpi_lock);
            uma_zfree(vnodepoll_zone, vp->v_pollinfo);
      }
#ifdef INVARIANTS
      /* XXX Elsewhere we can detect an already freed vnode via NULL v_op. */
      vp->v_op = NULL;
#endif
      lockdestroy(vp->v_vnlock);
      mtx_destroy(&vp->v_interlock);
      uma_zfree(vnode_zone, vp);
}

/*
 * Try to recycle a freed vnode.  We abort if anyone picks up a reference
 * before we actually vgone().  This function must be called with the vnode
 * held to prevent the vnode from being returned to the free list midway
 * through vgone().
 */
static int
vtryrecycle(struct vnode *vp)
{
      struct thread *td = curthread;
      struct mount *vnmp;

      CTR1(KTR_VFS, "vtryrecycle: trying vp %p", vp);
      VNASSERT(vp->v_holdcnt, vp,
          ("vtryrecycle: Recycling vp %p without a reference.", vp));
      /*
       * This vnode may found and locked via some other list, if so we
       * can't recycle it yet.
       */
      if (VOP_LOCK(vp, LK_EXCLUSIVE | LK_NOWAIT, td) != 0)
            return (EWOULDBLOCK);
      /*
       * Don't recycle if its filesystem is being suspended.
       */
      if (vn_start_write(vp, &vnmp, V_NOWAIT) != 0) {
            VOP_UNLOCK(vp, 0, td);
            return (EBUSY);
      }
      /*
       * If we got this far, we need to acquire the interlock and see if
       * anyone picked up this vnode from another list.  If not, we will
       * mark it with DOOMED via vgonel() so that anyone who does find it
       * will skip over it.
       */
      VI_LOCK(vp);
      if (vp->v_usecount) {
            VOP_UNLOCK(vp, LK_INTERLOCK, td);
            vn_finished_write(vnmp);
            return (EBUSY);
      }
      if ((vp->v_iflag & VI_DOOMED) == 0)
            vgonel(vp);
      VOP_UNLOCK(vp, LK_INTERLOCK, td);
      vn_finished_write(vnmp);
      CTR1(KTR_VFS, "vtryrecycle: recycled vp %p", vp);
      return (0);
}

/*
 * Return the next vnode from the free list.
 */
int
getnewvnode(tag, mp, vops, vpp)
      const char *tag;
      struct mount *mp;
      struct vop_vector *vops;
      struct vnode **vpp;
{
      struct vnode *vp = NULL;
      struct bufobj *bo;

      mtx_lock(&vnode_free_list_mtx);
      /*
       * Lend our context to reclaim vnodes if they've exceeded the max.
       */
      if (freevnodes > wantfreevnodes)
            vnlru_free(1);
      /*
       * Wait for available vnodes.
       */
      if (numvnodes > desiredvnodes) {
            if (mp != NULL && (mp->mnt_kern_flag & MNTK_SUSPEND)) {
                  /*
                   * File system is beeing suspended, we cannot risk a
                   * deadlock here, so allocate new vnode anyway.
                   */
                  if (freevnodes > wantfreevnodes)
                        vnlru_free(freevnodes - wantfreevnodes);
                  goto alloc;
            }
            if (vnlruproc_sig == 0) {
                  vnlruproc_sig = 1;      /* avoid unnecessary wakeups */
                  wakeup(vnlruproc);
            }
            msleep(&vnlruproc_sig, &vnode_free_list_mtx, PVFS,
                "vlruwk", hz);
#if 0 /* XXX Not all VFS_VGET/ffs_vget callers check returns. */
            if (numvnodes > desiredvnodes) {
                  mtx_unlock(&vnode_free_list_mtx);
                  return (ENFILE);
            }
#endif
      }
alloc:
      numvnodes++;
      mtx_unlock(&vnode_free_list_mtx);
      vp = (struct vnode *) uma_zalloc(vnode_zone, M_WAITOK|M_ZERO);
      /*
       * Setup locks.
       */
      vp->v_vnlock = &vp->v_lock;
      mtx_init(&vp->v_interlock, "vnode interlock", NULL, MTX_DEF);
      /*
       * By default, don't allow shared locks unless filesystems
       * opt-in.
       */
      lockinit(vp->v_vnlock, PVFS, tag, VLKTIMEOUT, LK_NOSHARE);
      /*
       * Initialize bufobj.
       */
      bo = &vp->v_bufobj;
      bo->__bo_vnode = vp;
      bo->bo_mtx = &vp->v_interlock;
      bo->bo_ops = &buf_ops_bio;
      bo->bo_private = vp;
      TAILQ_INIT(&bo->bo_clean.bv_hd);
      TAILQ_INIT(&bo->bo_dirty.bv_hd);
      /*
       * Initialize namecache.
       */
      LIST_INIT(&vp->v_cache_src);
      TAILQ_INIT(&vp->v_cache_dst);
      /*
       * Finalize various vnode identity bits.
       */
      vp->v_type = VNON;
      vp->v_tag = tag;
      vp->v_op = vops;
      v_incr_usecount(vp);
      vp->v_data = 0;
#ifdef MAC
      mac_init_vnode(vp);
      if (mp != NULL && (mp->mnt_flag & MNT_MULTILABEL) == 0)
            mac_associate_vnode_singlelabel(mp, vp);
      else if (mp == NULL)
            printf("NULL mp in getnewvnode()\n");
#endif
      if (mp != NULL) {
            insmntque(vp, mp);
            bo->bo_bsize = mp->mnt_stat.f_iosize;
            if ((mp->mnt_kern_flag & MNTK_NOKNOTE) != 0)
                  vp->v_vflag |= VV_NOKNOTE;
      }

      CTR2(KTR_VFS, "getnewvnode: mp %p vp %p", mp, vp);
      *vpp = vp;
      return (0);
}

/*
 * Delete from old mount point vnode list, if on one.
 */
static void
delmntque(struct vnode *vp)
{
      struct mount *mp;

      mp = vp->v_mount;
      if (mp == NULL)
            return;
      MNT_ILOCK(mp);
      vp->v_mount = NULL;
      VNASSERT(mp->mnt_nvnodelistsize > 0, vp,
            ("bad mount point vnode list size"));
      TAILQ_REMOVE(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
      mp->mnt_nvnodelistsize--;
      MNT_REL(mp);
      MNT_IUNLOCK(mp);
}

/*
 * Insert into list of vnodes for the new mount point, if available.
 */
static void
insmntque(struct vnode *vp, struct mount *mp)
{

      vp->v_mount = mp;
      VNASSERT(mp != NULL, vp, ("Don't call insmntque(foo, NULL)"));
      MNT_ILOCK(mp);
      MNT_REF(mp);
      TAILQ_INSERT_TAIL(&mp->mnt_nvnodelist, vp, v_nmntvnodes);
      VNASSERT(mp->mnt_nvnodelistsize >= 0, vp,
            ("neg mount point vnode list size"));
      mp->mnt_nvnodelistsize++;
      MNT_IUNLOCK(mp);
}

/*
 * Flush out and invalidate all buffers associated with a bufobj
 * Called with the underlying object locked.
 */
int
bufobj_invalbuf(struct bufobj *bo, int flags, struct thread *td, int slpflag, int slptimeo)
{
      int error;

      BO_LOCK(bo);
      if (flags & V_SAVE) {
            error = bufobj_wwait(bo, slpflag, slptimeo);
            if (error) {
                  BO_UNLOCK(bo);
                  return (error);
            }
            if (bo->bo_dirty.bv_cnt > 0) {
                  BO_UNLOCK(bo);
                  if ((error = BO_SYNC(bo, MNT_WAIT, td)) != 0)
                        return (error);
                  /*
                   * XXX We could save a lock/unlock if this was only
                   * enabled under INVARIANTS
                   */
                  BO_LOCK(bo);
                  if (bo->bo_numoutput > 0 || bo->bo_dirty.bv_cnt > 0)
                        panic("vinvalbuf: dirty bufs");
            }
      }
      /*
       * If you alter this loop please notice that interlock is dropped and
       * reacquired in flushbuflist.  Special care is needed to ensure that
       * no race conditions occur from this.
       */
      do {
            error = flushbuflist(&bo->bo_clean,
                flags, bo, slpflag, slptimeo);
            if (error == 0)
                  error = flushbuflist(&bo->bo_dirty,
                      flags, bo, slpflag, slptimeo);
            if (error != 0 && error != EAGAIN) {
                  BO_UNLOCK(bo);
                  return (error);
            }
      } while (error != 0);

      /*
       * Wait for I/O to complete.  XXX needs cleaning up.  The vnode can
       * have write I/O in-progress but if there is a VM object then the
       * VM object can also have read-I/O in-progress.
       */
      do {
            bufobj_wwait(bo, 0, 0);
            BO_UNLOCK(bo);
            if (bo->bo_object != NULL) {
                  VM_OBJECT_LOCK(bo->bo_object);
                  vm_object_pip_wait(bo->bo_object, "bovlbx");
                  VM_OBJECT_UNLOCK(bo->bo_object);
            }
            BO_LOCK(bo);
      } while (bo->bo_numoutput > 0);
      BO_UNLOCK(bo);

      /*
       * Destroy the copy in the VM cache, too.
       */
      if (bo->bo_object != NULL) {
            VM_OBJECT_LOCK(bo->bo_object);
            vm_object_page_remove(bo->bo_object, 0, 0,
                  (flags & V_SAVE) ? TRUE : FALSE);
            VM_OBJECT_UNLOCK(bo->bo_object);
      }

#ifdef INVARIANTS
      BO_LOCK(bo);
      if ((flags & (V_ALT | V_NORMAL)) == 0 &&
          (bo->bo_dirty.bv_cnt > 0 || bo->bo_clean.bv_cnt > 0))
            panic("vinvalbuf: flush failed");
      BO_UNLOCK(bo);
#endif
      return (0);
}

/*
 * Flush out and invalidate all buffers associated with a vnode.
 * Called with the underlying object locked.
 */
int
vinvalbuf(struct vnode *vp, int flags, struct thread *td, int slpflag, int slptimeo)
{

      CTR2(KTR_VFS, "vinvalbuf vp %p flags %d", vp, flags);
      ASSERT_VOP_LOCKED(vp, "vinvalbuf");
      return (bufobj_invalbuf(&vp->v_bufobj, flags, td, slpflag, slptimeo));
}

/*
 * Flush out buffers on the specified list.
 *
 */
static int
flushbuflist(bufv, flags, bo, slpflag, slptimeo)
      struct bufv *bufv;
      int flags;
      struct bufobj *bo;
      int slpflag, slptimeo;
{
      struct buf *bp, *nbp;
      int retval, error;
      daddr_t lblkno;
      b_xflags_t xflags;

      ASSERT_BO_LOCKED(bo);

      retval = 0;
      TAILQ_FOREACH_SAFE(bp, &bufv->bv_hd, b_bobufs, nbp) {
            if (((flags & V_NORMAL) && (bp->b_xflags & BX_ALTDATA)) ||
                ((flags & V_ALT) && (bp->b_xflags & BX_ALTDATA) == 0)) {
                  continue;
            }
            lblkno = 0;
            xflags = 0;
            if (nbp != NULL) {
                  lblkno = nbp->b_lblkno;
                  xflags = nbp->b_xflags &
                        (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN);
            }
            retval = EAGAIN;
            error = BUF_TIMELOCK(bp,
                LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, BO_MTX(bo),
                "flushbuf", slpflag, slptimeo);
            if (error) {
                  BO_LOCK(bo);
                  return (error != ENOLCK ? error : EAGAIN);
            }
            KASSERT(bp->b_bufobj == bo,
                  ("bp %p wrong b_bufobj %p should be %p",
                bp, bp->b_bufobj, bo));
            if (bp->b_bufobj != bo) {     /* XXX: necessary ? */
                  BUF_UNLOCK(bp);
                  BO_LOCK(bo);
                  return (EAGAIN);
            }
            /*
             * XXX Since there are no node locks for NFS, I
             * believe there is a slight chance that a delayed
             * write will occur while sleeping just above, so
             * check for it.
             */
            if (((bp->b_flags & (B_DELWRI | B_INVAL)) == B_DELWRI) &&
                (flags & V_SAVE)) {
                  bremfree(bp);
                  bp->b_flags |= B_ASYNC;
                  bwrite(bp);
                  BO_LOCK(bo);
                  return (EAGAIN);  /* XXX: why not loop ? */
            }
            bremfree(bp);
            bp->b_flags |= (B_INVAL | B_RELBUF);
            bp->b_flags &= ~B_ASYNC;
            brelse(bp);
            BO_LOCK(bo);
            if (nbp != NULL &&
                (nbp->b_bufobj != bo || 
                 nbp->b_lblkno != lblkno ||
                 (nbp->b_xflags &
                  (BX_BKGRDMARKER | BX_VNDIRTY | BX_VNCLEAN)) != xflags))
                  break;                  /* nbp invalid */
      }
      return (retval);
}

/*
 * Truncate a file's buffer and pages to a specified length.  This
 * is in lieu of the old vinvalbuf mechanism, which performed unneeded
 * sync activity.
 */
int
vtruncbuf(struct vnode *vp, struct ucred *cred, struct thread *td, off_t length, int blksize)
{
      struct buf *bp, *nbp;
      int anyfreed;
      int trunclbn;
      struct bufobj *bo;

      CTR2(KTR_VFS, "vtruncbuf vp %p length %jd", vp, length);
      /*
       * Round up to the *next* lbn.
       */
      trunclbn = (length + blksize - 1) / blksize;

      ASSERT_VOP_LOCKED(vp, "vtruncbuf");
restart:
      VI_LOCK(vp);
      bo = &vp->v_bufobj;
      anyfreed = 1;
      for (;anyfreed;) {
            anyfreed = 0;
            TAILQ_FOREACH_SAFE(bp, &bo->bo_clean.bv_hd, b_bobufs, nbp) {
                  if (bp->b_lblkno < trunclbn)
                        continue;
                  if (BUF_LOCK(bp,
                      LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
                      VI_MTX(vp)) == ENOLCK)
                        goto restart;

                  bremfree(bp);
                  bp->b_flags |= (B_INVAL | B_RELBUF);
                  bp->b_flags &= ~B_ASYNC;
                  brelse(bp);
                  anyfreed = 1;

                  if (nbp != NULL &&
                      (((nbp->b_xflags & BX_VNCLEAN) == 0) ||
                      (nbp->b_vp != vp) ||
                      (nbp->b_flags & B_DELWRI))) {
                        goto restart;
                  }
                  VI_LOCK(vp);
            }

            TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
                  if (bp->b_lblkno < trunclbn)
                        continue;
                  if (BUF_LOCK(bp,
                      LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
                      VI_MTX(vp)) == ENOLCK)
                        goto restart;
                  bremfree(bp);
                  bp->b_flags |= (B_INVAL | B_RELBUF);
                  bp->b_flags &= ~B_ASYNC;
                  brelse(bp);
                  anyfreed = 1;
                  if (nbp != NULL &&
                      (((nbp->b_xflags & BX_VNDIRTY) == 0) ||
                      (nbp->b_vp != vp) ||
                      (nbp->b_flags & B_DELWRI) == 0)) {
                        goto restart;
                  }
                  VI_LOCK(vp);
            }
      }

      if (length > 0) {
restartsync:
            TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) {
                  if (bp->b_lblkno > 0)
                        continue;
                  /*
                   * Since we hold the vnode lock this should only
                   * fail if we're racing with the buf daemon.
                   */
                  if (BUF_LOCK(bp,
                      LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK,
                      VI_MTX(vp)) == ENOLCK) {
                        goto restart;
                  }
                  VNASSERT((bp->b_flags & B_DELWRI), vp,
                      ("buf(%p) on dirty queue without DELWRI", bp));

                  bremfree(bp);
                  bawrite(bp);
                  VI_LOCK(vp);
                  goto restartsync;
            }
      }

      bufobj_wwait(bo, 0, 0);
      VI_UNLOCK(vp);
      vnode_pager_setsize(vp, length);

      return (0);
}

/*
 * buf_splay() - splay tree core for the clean/dirty list of buffers in
 *           a vnode.
 *
 *    NOTE: We have to deal with the special case of a background bitmap
 *    buffer, a situation where two buffers will have the same logical
 *    block offset.  We want (1) only the foreground buffer to be accessed
 *    in a lookup and (2) must differentiate between the foreground and
 *    background buffer in the splay tree algorithm because the splay
 *    tree cannot normally handle multiple entities with the same 'index'.
 *    We accomplish this by adding differentiating flags to the splay tree's
 *    numerical domain.
 */
static
struct buf *
buf_splay(daddr_t lblkno, b_xflags_t xflags, struct buf *root)
{
      struct buf dummy;
      struct buf *lefttreemax, *righttreemin, *y;

      if (root == NULL)
            return (NULL);
      lefttreemax = righttreemin = &dummy;
      for (;;) {
            if (lblkno < root->b_lblkno ||
                (lblkno == root->b_lblkno &&
                (xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
                  if ((y = root->b_left) == NULL)
                        break;
                  if (lblkno < y->b_lblkno) {
                        /* Rotate right. */
                        root->b_left = y->b_right;
                        y->b_right = root;
                        root = y;
                        if ((y = root->b_left) == NULL)
                              break;
                  }
                  /* Link into the new root's right tree. */
                  righttreemin->b_left = root;
                  righttreemin = root;
            } else if (lblkno > root->b_lblkno ||
                (lblkno == root->b_lblkno &&
                (xflags & BX_BKGRDMARKER) > (root->b_xflags & BX_BKGRDMARKER))) {
                  if ((y = root->b_right) == NULL)
                        break;
                  if (lblkno > y->b_lblkno) {
                        /* Rotate left. */
                        root->b_right = y->b_left;
                        y->b_left = root;
                        root = y;
                        if ((y = root->b_right) == NULL)
                              break;
                  }
                  /* Link into the new root's left tree. */
                  lefttreemax->b_right = root;
                  lefttreemax = root;
            } else {
                  break;
            }
            root = y;
      }
      /* Assemble the new root. */
      lefttreemax->b_right = root->b_left;
      righttreemin->b_left = root->b_right;
      root->b_left = dummy.b_right;
      root->b_right = dummy.b_left;
      return (root);
}

static void
buf_vlist_remove(struct buf *bp)
{
      struct buf *root;
      struct bufv *bv;

      KASSERT(bp->b_bufobj != NULL, ("No b_bufobj %p", bp));
      ASSERT_BO_LOCKED(bp->b_bufobj);
      KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) !=
          (BX_VNDIRTY|BX_VNCLEAN),
          ("buf_vlist_remove: Buf %p is on two lists", bp));
      if (bp->b_xflags & BX_VNDIRTY) 
            bv = &bp->b_bufobj->bo_dirty;
      else
            bv = &bp->b_bufobj->bo_clean;
      if (bp != bv->bv_root) {
            root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
            KASSERT(root == bp, ("splay lookup failed in remove"));
      }
      if (bp->b_left == NULL) {
            root = bp->b_right;
      } else {
            root = buf_splay(bp->b_lblkno, bp->b_xflags, bp->b_left);
            root->b_right = bp->b_right;
      }
      bv->bv_root = root;
      TAILQ_REMOVE(&bv->bv_hd, bp, b_bobufs);
      bv->bv_cnt--;
      bp->b_xflags &= ~(BX_VNDIRTY | BX_VNCLEAN);
}

/*
 * Add the buffer to the sorted clean or dirty block list using a
 * splay tree algorithm.
 *
 * NOTE: xflags is passed as a constant, optimizing this inline function!
 */
static void
buf_vlist_add(struct buf *bp, struct bufobj *bo, b_xflags_t xflags)
{
      struct buf *root;
      struct bufv *bv;

      ASSERT_BO_LOCKED(bo);
      KASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0,
          ("buf_vlist_add: Buf %p has existing xflags %d", bp, bp->b_xflags));
      bp->b_xflags |= xflags;
      if (xflags & BX_VNDIRTY)
            bv = &bo->bo_dirty;
      else
            bv = &bo->bo_clean;

      root = buf_splay(bp->b_lblkno, bp->b_xflags, bv->bv_root);
      if (root == NULL) {
            bp->b_left = NULL;
            bp->b_right = NULL;
            TAILQ_INSERT_TAIL(&bv->bv_hd, bp, b_bobufs);
      } else if (bp->b_lblkno < root->b_lblkno ||
          (bp->b_lblkno == root->b_lblkno &&
          (bp->b_xflags & BX_BKGRDMARKER) < (root->b_xflags & BX_BKGRDMARKER))) {
            bp->b_left = root->b_left;
            bp->b_right = root;
            root->b_left = NULL;
            TAILQ_INSERT_BEFORE(root, bp, b_bobufs);
      } else {
            bp->b_right = root->b_right;
            bp->b_left = root;
            root->b_right = NULL;
            TAILQ_INSERT_AFTER(&bv->bv_hd, root, bp, b_bobufs);
      }
      bv->bv_cnt++;
      bv->bv_root = bp;
}

/*
 * Lookup a buffer using the splay tree.  Note that we specifically avoid
 * shadow buffers used in background bitmap writes.
 *
 * This code isn't quite efficient as it could be because we are maintaining
 * two sorted lists and do not know which list the block resides in.
 *
 * During a "make buildworld" the desired buffer is found at one of
 * the roots more than 60% of the time.  Thus, checking both roots
 * before performing either splay eliminates unnecessary splays on the
 * first tree splayed.
 */
struct buf *
gbincore(struct bufobj *bo, daddr_t lblkno)
{
      struct buf *bp;

      ASSERT_BO_LOCKED(bo);
      if ((bp = bo->bo_clean.bv_root) != NULL &&
          bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
            return (bp);
      if ((bp = bo->bo_dirty.bv_root) != NULL &&
          bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
            return (bp);
      if ((bp = bo->bo_clean.bv_root) != NULL) {
            bo->bo_clean.bv_root = bp = buf_splay(lblkno, 0, bp);
            if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
                  return (bp);
      }
      if ((bp = bo->bo_dirty.bv_root) != NULL) {
            bo->bo_dirty.bv_root = bp = buf_splay(lblkno, 0, bp);
            if (bp->b_lblkno == lblkno && !(bp->b_xflags & BX_BKGRDMARKER))
                  return (bp);
      }
      return (NULL);
}

/*
 * Associate a buffer with a vnode.
 */
void
bgetvp(struct vnode *vp, struct buf *bp)
{

      VNASSERT(bp->b_vp == NULL, bp->b_vp, ("bgetvp: not free"));

      CTR3(KTR_BUF, "bgetvp(%p) vp %p flags %X", bp, vp, bp->b_flags);
      VNASSERT((bp->b_xflags & (BX_VNDIRTY|BX_VNCLEAN)) == 0, vp,
          ("bgetvp: bp already attached! %p", bp));

      ASSERT_VI_LOCKED(vp, "bgetvp");
      vholdl(vp);
      bp->b_vp = vp;
      bp->b_bufobj = &vp->v_bufobj;
      /*
       * Insert onto list for new vnode.
       */
      buf_vlist_add(bp, &vp->v_bufobj, BX_VNCLEAN);
}

/*
 * Disassociate a buffer from a vnode.
 */
void
brelvp(struct buf *bp)
{
      struct bufobj *bo;
      struct vnode *vp;

      CTR3(KTR_BUF, "brelvp(%p) vp %p flags %X", bp, bp->b_vp, bp->b_flags);
      KASSERT(bp->b_vp != NULL, ("brelvp: NULL"));

      /*
       * Delete from old vnode list, if on one.
       */
      vp = bp->b_vp;          /* XXX */
      bo = bp->b_bufobj;
      BO_LOCK(bo);
      if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
            buf_vlist_remove(bp);
      else
            panic("brelvp: Buffer %p not on queue.", bp);
      if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
            bo->bo_flag &= ~BO_ONWORKLST;
            mtx_lock(&sync_mtx);
            LIST_REMOVE(bo, bo_synclist);
            syncer_worklist_len--;
            mtx_unlock(&sync_mtx);
      }
      bp->b_vp = NULL;
      bp->b_bufobj = NULL;
      vdropl(vp);
}

/*
 * Add an item to the syncer work queue.
 */
static void
vn_syncer_add_to_worklist(struct bufobj *bo, int delay)
{
      int slot;

      ASSERT_BO_LOCKED(bo);

      mtx_lock(&sync_mtx);
      if (bo->bo_flag & BO_ONWORKLST)
            LIST_REMOVE(bo, bo_synclist);
      else {
            bo->bo_flag |= BO_ONWORKLST;
            syncer_worklist_len++;
      }

      if (delay > syncer_maxdelay - 2)
            delay = syncer_maxdelay - 2;
      slot = (syncer_delayno + delay) & syncer_mask;

      LIST_INSERT_HEAD(&syncer_workitem_pending[slot], bo, bo_synclist);
      mtx_unlock(&sync_mtx);
}

static int
sysctl_vfs_worklist_len(SYSCTL_HANDLER_ARGS)
{
      int error, len;

      mtx_lock(&sync_mtx);
      len = syncer_worklist_len - sync_vnode_count;
      mtx_unlock(&sync_mtx);
      error = SYSCTL_OUT(req, &len, sizeof(len));
      return (error);
}

SYSCTL_PROC(_vfs, OID_AUTO, worklist_len, CTLTYPE_INT | CTLFLAG_RD, NULL, 0,
    sysctl_vfs_worklist_len, "I", "Syncer thread worklist length");

static struct proc *updateproc;
static void sched_sync(void);
static struct kproc_desc up_kp = {
      "syncer",
      sched_sync,
      &updateproc
};
SYSINIT(syncer, SI_SUB_KTHREAD_UPDATE, SI_ORDER_FIRST, kproc_start, &up_kp)

static int
sync_vnode(struct bufobj *bo, struct thread *td)
{
      struct vnode *vp;
      struct mount *mp;

      vp = bo->__bo_vnode;    /* XXX */
      if (VOP_ISLOCKED(vp, NULL) != 0)
            return (1);
      if (VI_TRYLOCK(vp) == 0)
            return (1);
      /*
       * We use vhold in case the vnode does not
       * successfully sync.  vhold prevents the vnode from
       * going away when we unlock the sync_mtx so that
       * we can acquire the vnode interlock.
       */
      vholdl(vp);
      mtx_unlock(&sync_mtx);
      VI_UNLOCK(vp);
      if (vn_start_write(vp, &mp, V_NOWAIT) != 0) {
            vdrop(vp);
            mtx_lock(&sync_mtx);
            return (1);
      }
      vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
      (void) VOP_FSYNC(vp, MNT_LAZY, td);
      VOP_UNLOCK(vp, 0, td);
      vn_finished_write(mp);
      VI_LOCK(vp);
      if ((bo->bo_flag & BO_ONWORKLST) != 0) {
            /*
             * Put us back on the worklist.  The worklist
             * routine will remove us from our current
             * position and then add us back in at a later
             * position.
             */
            vn_syncer_add_to_worklist(bo, syncdelay);
      }
      vdropl(vp);
      mtx_lock(&sync_mtx);
      return (0);
}

/*
 * System filesystem synchronizer daemon.
 */
static void
sched_sync(void)
{
      struct synclist *next;
      struct synclist *slp;
      struct bufobj *bo;
      long starttime;
      struct thread *td = FIRST_THREAD_IN_PROC(updateproc);
      static int dummychan;
      int last_work_seen;
      int net_worklist_len;
      int syncer_final_iter;
      int first_printf;
      int error;

      mtx_lock(&Giant);
      last_work_seen = 0;
      syncer_final_iter = 0;
      first_printf = 1;
      syncer_state = SYNCER_RUNNING;
      starttime = time_second;
      td->td_pflags |= TDP_NORUNNINGBUF;

      EVENTHANDLER_REGISTER(shutdown_pre_sync, syncer_shutdown, td->td_proc,
          SHUTDOWN_PRI_LAST);

      for (;;) {
            mtx_lock(&sync_mtx);
            if (syncer_state == SYNCER_FINAL_DELAY &&
                syncer_final_iter == 0) {
                  mtx_unlock(&sync_mtx);
                  kthread_suspend_check(td->td_proc);
                  mtx_lock(&sync_mtx);
            }
            net_worklist_len = syncer_worklist_len - sync_vnode_count;
            if (syncer_state != SYNCER_RUNNING &&
                starttime != time_second) {
                  if (first_printf) {
                        printf("\nSyncing disks, vnodes remaining...");
                        first_printf = 0;
                  }
                  printf("%d ", net_worklist_len);
            }
            starttime = time_second;

            /*
             * Push files whose dirty time has expired.  Be careful
             * of interrupt race on slp queue.
             *
             * Skip over empty worklist slots when shutting down.
             */
            do {
                  slp = &syncer_workitem_pending[syncer_delayno];
                  syncer_delayno += 1;
                  if (syncer_delayno == syncer_maxdelay)
                        syncer_delayno = 0;
                  next = &syncer_workitem_pending[syncer_delayno];
                  /*
                   * If the worklist has wrapped since the
                   * it was emptied of all but syncer vnodes, 
                   * switch to the FINAL_DELAY state and run
                   * for one more second.
                   */
                  if (syncer_state == SYNCER_SHUTTING_DOWN &&
                      net_worklist_len == 0 &&
                      last_work_seen == syncer_delayno) {
                        syncer_state = SYNCER_FINAL_DELAY;
                        syncer_final_iter = SYNCER_SHUTDOWN_SPEEDUP;
                  }
            } while (syncer_state != SYNCER_RUNNING && LIST_EMPTY(slp) &&
                syncer_worklist_len > 0);

            /*
             * Keep track of the last time there was anything
             * on the worklist other than syncer vnodes.
             * Return to the SHUTTING_DOWN state if any
             * new work appears.
             */
            if (net_worklist_len > 0 || syncer_state == SYNCER_RUNNING)
                  last_work_seen = syncer_delayno;
            if (net_worklist_len > 0 && syncer_state == SYNCER_FINAL_DELAY)
                  syncer_state = SYNCER_SHUTTING_DOWN;
            while ((bo = LIST_FIRST(slp)) != NULL) {
                  error = sync_vnode(bo, td);
                  if (error == 1) {
                        LIST_REMOVE(bo, bo_synclist);
                        LIST_INSERT_HEAD(next, bo, bo_synclist);
                        continue;
                  }
            }
            if (syncer_state == SYNCER_FINAL_DELAY && syncer_final_iter > 0)
                  syncer_final_iter--;
            mtx_unlock(&sync_mtx);
            /*
             * The variable rushjob allows the kernel to speed up the
             * processing of the filesystem syncer process. A rushjob
             * value of N tells the filesystem syncer to process the next
             * N seconds worth of work on its queue ASAP. Currently rushjob
             * is used by the soft update code to speed up the filesystem
             * syncer process when the incore state is getting so far
             * ahead of the disk that the kernel memory pool is being
             * threatened with exhaustion.
             */
            mtx_lock(&sync_mtx);
            if (rushjob > 0) {
                  rushjob -= 1;
                  mtx_unlock(&sync_mtx);
                  continue;
            }
            mtx_unlock(&sync_mtx);
            /*
             * Just sleep for a short period if time between
             * iterations when shutting down to allow some I/O
             * to happen.
             *
             * If it has taken us less than a second to process the
             * current work, then wait. Otherwise start right over
             * again. We can still lose time if any single round
             * takes more than two seconds, but it does not really
             * matter as we are just trying to generally pace the
             * filesystem activity.
             */
            if (syncer_state != SYNCER_RUNNING)
                  tsleep(&dummychan, PPAUSE, "syncfnl",
                      hz / SYNCER_SHUTDOWN_SPEEDUP);
            else if (time_second == starttime)
                  tsleep(&lbolt, PPAUSE, "syncer", 0);
      }
}

/*
 * Request the syncer daemon to speed up its work.
 * We never push it to speed up more than half of its
 * normal turn time, otherwise it could take over the cpu.
 */
int
speedup_syncer()
{
      struct thread *td;
      int ret = 0;

      td = FIRST_THREAD_IN_PROC(updateproc);
      sleepq_remove(td, &lbolt);
      mtx_lock(&sync_mtx);
      if (rushjob < syncdelay / 2) {
            rushjob += 1;
            stat_rush_requests += 1;
            ret = 1;
      }
      mtx_unlock(&sync_mtx);
      return (ret);
}

/*
 * Tell the syncer to speed up its work and run though its work
 * list several times, then tell it to shut down.
 */
static void
syncer_shutdown(void *arg, int howto)
{
      struct thread *td;

      if (howto & RB_NOSYNC)
            return;
      td = FIRST_THREAD_IN_PROC(updateproc);
      sleepq_remove(td, &lbolt);
      mtx_lock(&sync_mtx);
      syncer_state = SYNCER_SHUTTING_DOWN;
      rushjob = 0;
      mtx_unlock(&sync_mtx);
      kproc_shutdown(arg, howto);
}

/*
 * Reassign a buffer from one vnode to another.
 * Used to assign file specific control information
 * (indirect blocks) to the vnode to which they belong.
 */
void
reassignbuf(struct buf *bp)
{
      struct vnode *vp;
      struct bufobj *bo;
      int delay;
#ifdef INVARIANTS
      struct bufv *bv;
#endif

      vp = bp->b_vp;
      bo = bp->b_bufobj;
      ++reassignbufcalls;

      CTR3(KTR_BUF, "reassignbuf(%p) vp %p flags %X",
          bp, bp->b_vp, bp->b_flags);
      /*
       * B_PAGING flagged buffers cannot be reassigned because their vp
       * is not fully linked in.
       */
      if (bp->b_flags & B_PAGING)
            panic("cannot reassign paging buffer");

      /*
       * Delete from old vnode list, if on one.
       */
      VI_LOCK(vp);
      if (bp->b_xflags & (BX_VNDIRTY | BX_VNCLEAN))
            buf_vlist_remove(bp);
      else
            panic("reassignbuf: Buffer %p not on queue.", bp);
      /*
       * If dirty, put on list of dirty buffers; otherwise insert onto list
       * of clean buffers.
       */
      if (bp->b_flags & B_DELWRI) {
            if ((bo->bo_flag & BO_ONWORKLST) == 0) {
                  switch (vp->v_type) {
                  case VDIR:
                        delay = dirdelay;
                        break;
                  case VCHR:
                        delay = metadelay;
                        break;
                  default:
                        delay = filedelay;
                  }
                  vn_syncer_add_to_worklist(bo, delay);
            }
            buf_vlist_add(bp, bo, BX_VNDIRTY);
      } else {
            buf_vlist_add(bp, bo, BX_VNCLEAN);

            if ((bo->bo_flag & BO_ONWORKLST) && bo->bo_dirty.bv_cnt == 0) {
                  mtx_lock(&sync_mtx);
                  LIST_REMOVE(bo, bo_synclist);
                  syncer_worklist_len--;
                  mtx_unlock(&sync_mtx);
                  bo->bo_flag &= ~BO_ONWORKLST;
            }
      }
#ifdef INVARIANTS
      bv = &bo->bo_clean;
      bp = TAILQ_FIRST(&bv->bv_hd);
      KASSERT(bp == NULL || bp->b_bufobj == bo,
          ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
      bp = TAILQ_LAST(&bv->bv_hd, buflists);
      KASSERT(bp == NULL || bp->b_bufobj == bo,
          ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
      bv = &bo->bo_dirty;
      bp = TAILQ_FIRST(&bv->bv_hd);
      KASSERT(bp == NULL || bp->b_bufobj == bo,
          ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
      bp = TAILQ_LAST(&bv->bv_hd, buflists);
      KASSERT(bp == NULL || bp->b_bufobj == bo,
          ("bp %p wrong b_bufobj %p should be %p", bp, bp->b_bufobj, bo));
#endif
      VI_UNLOCK(vp);
}

/*
 * Increment the use and hold counts on the vnode, taking care to reference
 * the driver's usecount if this is a chardev.  The vholdl() will remove
 * the vnode from the free list if it is presently free.  Requires the
 * vnode interlock and returns with it held.
 */
static void
v_incr_usecount(struct vnode *vp)
{

      CTR3(KTR_VFS, "v_incr_usecount: vp %p holdcnt %d usecount %d\n",
          vp, vp->v_holdcnt, vp->v_usecount);
      vp->v_usecount++;
      if (vp->v_type == VCHR && vp->v_rdev != NULL) {
            dev_lock();
            vp->v_rdev->si_usecount++;
            dev_unlock();
      }
      vholdl(vp);
}

/*
 * Turn a holdcnt into a use+holdcnt such that only one call to
 * v_decr_usecount is needed.
 */
static void
v_upgrade_usecount(struct vnode *vp)
{

      CTR3(KTR_VFS, "v_upgrade_usecount: vp %p holdcnt %d usecount %d\n",
          vp, vp->v_holdcnt, vp->v_usecount);
      vp->v_usecount++;
      if (vp->v_type == VCHR && vp->v_rdev != NULL) {
            dev_lock();
            vp->v_rdev->si_usecount++;
            dev_unlock();
      }
}

/*
 * Decrement the vnode use and hold count along with the driver's usecount
 * if this is a chardev.  The vdropl() below releases the vnode interlock
 * as it may free the vnode.
 */
static void
v_decr_usecount(struct vnode *vp)
{

      CTR3(KTR_VFS, "v_decr_usecount: vp %p holdcnt %d usecount %d\n",
          vp, vp->v_holdcnt, vp->v_usecount);
      ASSERT_VI_LOCKED(vp, __FUNCTION__);
      VNASSERT(vp->v_usecount > 0, vp,
          ("v_decr_usecount: negative usecount"));
      vp->v_usecount--;
      if (vp->v_type == VCHR && vp->v_rdev != NULL) {
            dev_lock();
            vp->v_rdev->si_usecount--;
            dev_unlock();
      }
      vdropl(vp);
}

/*
 * Decrement only the use count and driver use count.  This is intended to
 * be paired with a follow on vdropl() to release the remaining hold count.
 * In this way we may vgone() a vnode with a 0 usecount without risk of
 * having it end up on a free list because the hold count is kept above 0.
 */
static void
v_decr_useonly(struct vnode *vp)
{

      CTR3(KTR_VFS, "v_decr_useonly: vp %p holdcnt %d usecount %d\n",
          vp, vp->v_holdcnt, vp->v_usecount);
      ASSERT_VI_LOCKED(vp, __FUNCTION__);
      VNASSERT(vp->v_usecount > 0, vp,
          ("v_decr_useonly: negative usecount"));
      vp->v_usecount--;
      if (vp->v_type == VCHR && vp->v_rdev != NULL) {
            dev_lock();
            vp->v_rdev->si_usecount--;
            dev_unlock();
      }
}

/*
 * Grab a particular vnode from the free list, increment its
 * reference count and lock it. The vnode lock bit is set if the
 * vnode is being eliminated in vgone. The process is awakened
 * when the transition is completed, and an error returned to
 * indicate that the vnode is no longer usable (possibly having
 * been changed to a new filesystem type).
 */
int
vget(struct vnode *vp, int flags, struct thread *td)
{
      int oweinact;
      int oldflags;
      int error;

      error = 0;
      oldflags = flags;
      oweinact = 0;
      VFS_ASSERT_GIANT(vp->v_mount);
      if ((flags & LK_INTERLOCK) == 0)
            VI_LOCK(vp);
      /*
       * If the inactive call was deferred because vput() was called
       * with a shared lock, we have to do it here before another thread
       * gets a reference to data that should be dead.
       */
      if (vp->v_iflag & VI_OWEINACT) {
            if (flags & LK_NOWAIT) {
                  VI_UNLOCK(vp);
                  return (EBUSY);
            }
            flags &= ~LK_TYPE_MASK;
            flags |= LK_EXCLUSIVE;
            oweinact = 1;
      }
      vholdl(vp);
      if ((error = vn_lock(vp, flags | LK_INTERLOCK, td)) != 0) {
            vdrop(vp);
            return (error);
      }
      VI_LOCK(vp);
      /* Upgrade our holdcnt to a usecount. */
      v_upgrade_usecount(vp);
      if (vp->v_iflag & VI_DOOMED && (flags & LK_RETRY) == 0)
            panic("vget: vn_lock failed to return ENOENT\n");
      if (oweinact) {
            if (vp->v_iflag & VI_OWEINACT)
                  vinactive(vp, td);
            VI_UNLOCK(vp);
            if ((oldflags & LK_TYPE_MASK) == 0)
                  VOP_UNLOCK(vp, 0, td);
      } else
            VI_UNLOCK(vp);
      return (0);
}

/*
 * Increase the reference count of a vnode.
 */
void
vref(struct vnode *vp)
{

      VI_LOCK(vp);
      v_incr_usecount(vp);
      VI_UNLOCK(vp);
}

/*
 * Return reference count of a vnode.
 *
 * The results of this call are only guaranteed when some mechanism other
 * than the VI lock is used to stop other processes from gaining references
 * to the vnode.  This may be the case if the caller holds the only reference.
 * This is also useful when stale data is acceptable as race conditions may
 * be accounted for by some other means.
 */
int
vrefcnt(struct vnode *vp)
{
      int usecnt;

      VI_LOCK(vp);
      usecnt = vp->v_usecount;
      VI_UNLOCK(vp);

      return (usecnt);
}


/*
 * Vnode put/release.
 * If count drops to zero, call inactive routine and return to freelist.
 */
void
vrele(vp)
      struct vnode *vp;
{
      struct thread *td = curthread;      /* XXX */

      KASSERT(vp != NULL, ("vrele: null vp"));
      VFS_ASSERT_GIANT(vp->v_mount);

      VI_LOCK(vp);

      /* Skip this v_writecount check if we're going to panic below. */
      VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
          ("vrele: missed vn_close"));

      if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
          vp->v_usecount == 1)) {
            v_decr_usecount(vp);
            return;
      }
      if (vp->v_usecount != 1) {
#ifdef DIAGNOSTIC
            vprint("vrele: negative ref count", vp);
#endif
            VI_UNLOCK(vp);
            panic("vrele: negative ref cnt");
      }
      /*
       * We want to hold the vnode until the inactive finishes to
       * prevent vgone() races.  We drop the use count here and the
       * hold count below when we're done.
       */
      v_decr_useonly(vp);
      /*
       * We must call VOP_INACTIVE with the node locked. Mark
       * as VI_DOINGINACT to avoid recursion.
       */
      vp->v_iflag |= VI_OWEINACT;
      if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK, td) == 0) {
            VI_LOCK(vp);
            if (vp->v_usecount > 0)
                  vp->v_iflag &= ~VI_OWEINACT;
            if (vp->v_iflag & VI_OWEINACT)
                  vinactive(vp, td);
            VOP_UNLOCK(vp, 0, td);
      } else {
            VI_LOCK(vp);
            if (vp->v_usecount > 0)
                  vp->v_iflag &= ~VI_OWEINACT;
      }
      vdropl(vp);
}

/*
 * Release an already locked vnode.  This give the same effects as
 * unlock+vrele(), but takes less time and avoids releasing and
 * re-aquiring the lock (as vrele() aquires the lock internally.)
 */
void
vput(vp)
      struct vnode *vp;
{
      struct thread *td = curthread;      /* XXX */
      int error;

      KASSERT(vp != NULL, ("vput: null vp"));
      ASSERT_VOP_LOCKED(vp, "vput");
      VFS_ASSERT_GIANT(vp->v_mount);
      VI_LOCK(vp);
      /* Skip this v_writecount check if we're going to panic below. */
      VNASSERT(vp->v_writecount < vp->v_usecount || vp->v_usecount < 1, vp,
          ("vput: missed vn_close"));
      error = 0;

      if (vp->v_usecount > 1 || ((vp->v_iflag & VI_DOINGINACT) &&
          vp->v_usecount == 1)) {
            VOP_UNLOCK(vp, 0, td);
            v_decr_usecount(vp);
            return;
      }

      if (vp->v_usecount != 1) {
#ifdef DIAGNOSTIC
            vprint("vput: negative ref count", vp);
#endif
            panic("vput: negative ref cnt");
      }
      /*
       * We want to hold the vnode until the inactive finishes to
       * prevent vgone() races.  We drop the use count here and the
       * hold count below when we're done.
       */
      v_decr_useonly(vp);
      vp->v_iflag |= VI_OWEINACT;
      if (VOP_ISLOCKED(vp, NULL) != LK_EXCLUSIVE) {
            error = VOP_LOCK(vp, LK_EXCLUPGRADE|LK_INTERLOCK|LK_NOWAIT, td);
            VI_LOCK(vp);
            if (error) {
                  if (vp->v_usecount > 0)
                        vp->v_iflag &= ~VI_OWEINACT;
                  goto done;
            }
      }
      if (vp->v_usecount > 0)
            vp->v_iflag &= ~VI_OWEINACT;
      if (vp->v_iflag & VI_OWEINACT)
            vinactive(vp, td);
      VOP_UNLOCK(vp, 0, td);
done:
      vdropl(vp);
}

/*
 * Somebody doesn't want the vnode recycled.
 */
void
vhold(struct vnode *vp)
{

      VI_LOCK(vp);
      vholdl(vp);
      VI_UNLOCK(vp);
}

void
vholdl(struct vnode *vp)
{

      vp->v_holdcnt++;
      if (VSHOULDBUSY(vp))
            vbusy(vp);
}

/*
 * Note that there is one less who cares about this vnode.  vdrop() is the
 * opposite of vhold().
 */
void
vdrop(struct vnode *vp)
{

      VI_LOCK(vp);
      vdropl(vp);
}

/*
 * Drop the hold count of the vnode.  If this is the last reference to
 * the vnode we will free it if it has been vgone'd otherwise it is
 * placed on the free list.
 */
void
vdropl(struct vnode *vp)
{

      if (vp->v_holdcnt <= 0)
            panic("vdrop: holdcnt %d", vp->v_holdcnt);
      vp->v_holdcnt--;
      if (vp->v_holdcnt == 0) {
            if (vp->v_iflag & VI_DOOMED) {
                  vdestroy(vp);
                  return;
            } else
                  vfree(vp);
      }
      VI_UNLOCK(vp);
}

/*
 * Call VOP_INACTIVE on the vnode and manage the DOINGINACT and OWEINACT
 * flags.  DOINGINACT prevents us from recursing in calls to vinactive.
 * OWEINACT tracks whether a vnode missed a call to inactive due to a
 * failed lock upgrade.
 */
static void
vinactive(struct vnode *vp, struct thread *td)
{

      ASSERT_VOP_LOCKED(vp, "vinactive");
      ASSERT_VI_LOCKED(vp, "vinactive");
      VNASSERT((vp->v_iflag & VI_DOINGINACT) == 0, vp,
          ("vinactive: recursed on VI_DOINGINACT"));
      vp->v_iflag |= VI_DOINGINACT;
      vp->v_iflag &= ~VI_OWEINACT;
      VI_UNLOCK(vp);
      VOP_INACTIVE(vp, td);
      VI_LOCK(vp);
      VNASSERT(vp->v_iflag & VI_DOINGINACT, vp,
          ("vinactive: lost VI_DOINGINACT"));
      vp->v_iflag &= ~VI_DOINGINACT;
}

/*
 * Remove any vnodes in the vnode table belonging to mount point mp.
 *
 * If FORCECLOSE is not specified, there should not be any active ones,
 * return error if any are found (nb: this is a user error, not a
 * system error). If FORCECLOSE is specified, detach any active vnodes
 * that are found.
 *
 * If WRITECLOSE is set, only flush out regular file vnodes open for
 * writing.
 *
 * SKIPSYSTEM causes any vnodes marked VV_SYSTEM to be skipped.
 *
 * `rootrefs' specifies the base reference count for the root vnode
 * of this filesystem. The root vnode is considered busy if its
 * v_usecount exceeds this value. On a successful return, vflush(, td)
 * will call vrele() on the root vnode exactly rootrefs times.
 * If the SKIPSYSTEM or WRITECLOSE flags are specified, rootrefs must
 * be zero.
 */
#ifdef DIAGNOSTIC
static int busyprt = 0;       /* print out busy vnodes */
SYSCTL_INT(_debug, OID_AUTO, busyprt, CTLFLAG_RW, &busyprt, 0, "");
#endif

int
vflush(mp, rootrefs, flags, td)
      struct mount *mp;
      int rootrefs;
      int flags;
      struct thread *td;
{
      struct vnode *vp, *mvp, *rootvp = NULL;
      struct vattr vattr;
      int busy = 0, error;

      CTR1(KTR_VFS, "vflush: mp %p", mp);
      if (rootrefs > 0) {
            KASSERT((flags & (SKIPSYSTEM | WRITECLOSE)) == 0,
                ("vflush: bad args"));
            /*
             * Get the filesystem root vnode. We can vput() it
             * immediately, since with rootrefs > 0, it won't go away.
             */
            if ((error = VFS_ROOT(mp, LK_EXCLUSIVE, &rootvp, td)) != 0)
                  return (error);
            vput(rootvp);

      }
      MNT_ILOCK(mp);
loop:
      MNT_VNODE_FOREACH(vp, mp, mvp) {

            VI_LOCK(vp);
            vholdl(vp);
            MNT_IUNLOCK(mp);
            error = vn_lock(vp, LK_INTERLOCK | LK_EXCLUSIVE, td);
            if (error) {
                  vdrop(vp);
                  MNT_ILOCK(mp);
                  MNT_VNODE_FOREACH_ABORT_ILOCKED(mp, mvp);
                  goto loop;
            }
            /*
             * Skip over a vnodes marked VV_SYSTEM.
             */
            if ((flags & SKIPSYSTEM) && (vp->v_vflag & VV_SYSTEM)) {
                  VOP_UNLOCK(vp, 0, td);
                  vdrop(vp);
                  MNT_ILOCK(mp);
                  continue;
            }
            /*
             * If WRITECLOSE is set, flush out unlinked but still open
             * files (even if open only for reading) and regular file
             * vnodes open for writing.
             */
            if (flags & WRITECLOSE) {
                  error = VOP_GETATTR(vp, &vattr, td->td_ucred, td);
                  VI_LOCK(vp);

                  if ((vp->v_type == VNON ||
                      (error == 0 && vattr.va_nlink > 0)) &&
                      (vp->v_writecount == 0 || vp->v_type != VREG)) {
                        VOP_UNLOCK(vp, 0, td);
                        vdropl(vp);
                        MNT_ILOCK(mp);
                        continue;
                  }
            } else
                  VI_LOCK(vp);
            /*
             * With v_usecount == 0, all we need to do is clear out the
             * vnode data structures and we are done.
             *
             * If FORCECLOSE is set, forcibly close the vnode.
             */
            if (vp->v_usecount == 0 || (flags & FORCECLOSE)) {
                  VNASSERT(vp->v_usecount == 0 ||
                      (vp->v_type != VCHR && vp->v_type != VBLK), vp,
                      ("device VNODE %p is FORCECLOSED", vp));
                  vgonel(vp);
            } else {
                  busy++;
#ifdef DIAGNOSTIC
                  if (busyprt)
                        vprint("vflush: busy vnode", vp);
#endif
            }
            VOP_UNLOCK(vp, 0, td);
            vdropl(vp);
            MNT_ILOCK(mp);
      }
      MNT_IUNLOCK(mp);
      if (rootrefs > 0 && (flags & FORCECLOSE) == 0) {
            /*
             * If just the root vnode is busy, and if its refcount
             * is equal to `rootrefs', then go ahead and kill it.
             */
            VI_LOCK(rootvp);
            KASSERT(busy > 0, ("vflush: not busy"));
            VNASSERT(rootvp->v_usecount >= rootrefs, rootvp,
                ("vflush: usecount %d < rootrefs %d",
                 rootvp->v_usecount, rootrefs));
            if (busy == 1 && rootvp->v_usecount == rootrefs) {
                  VOP_LOCK(rootvp, LK_EXCLUSIVE|LK_INTERLOCK, td);
                  vgone(rootvp);
                  VOP_UNLOCK(rootvp, 0, td);
                  busy = 0;
            } else
                  VI_UNLOCK(rootvp);
      }
      if (busy)
            return (EBUSY);
      for (; rootrefs > 0; rootrefs--)
            vrele(rootvp);
      return (0);
}

/*
 * Recycle an unused vnode to the front of the free list.
 */
int
vrecycle(struct vnode *vp, struct thread *td)
{
      int recycled;

      ASSERT_VOP_LOCKED(vp, "vrecycle");
      recycled = 0;
      VI_LOCK(vp);
      if (vp->v_usecount == 0) {
            recycled = 1;
            vgonel(vp);
      }
      VI_UNLOCK(vp);
      return (recycled);
}

/*
 * Eliminate all activity associated with a vnode
 * in preparation for reuse.
 */
void
vgone(struct vnode *vp)
{
      VI_LOCK(vp);
      vgonel(vp);
      VI_UNLOCK(vp);
}

/*
 * vgone, with the vp interlock held.
 */
void
vgonel(struct vnode *vp)
{
      struct thread *td;
      int oweinact;
      int active;
      struct mount *mp;

      CTR1(KTR_VFS, "vgonel: vp %p", vp);
      ASSERT_VOP_LOCKED(vp, "vgonel");
      ASSERT_VI_LOCKED(vp, "vgonel");
#if 0
      /* XXX Need to fix ttyvp before I enable this. */
      VNASSERT(vp->v_holdcnt, vp,
          ("vgonel: vp %p has no reference.", vp));
#endif
      td = curthread;

      /*
       * Don't vgonel if we're already doomed.
       */
      if (vp->v_iflag & VI_DOOMED)
            return;
      vp->v_iflag |= VI_DOOMED;
      /*
       * Check to see if the vnode is in use.  If so, we have to call
       * VOP_CLOSE() and VOP_INACTIVE().
       */
      active = vp->v_usecount;
      oweinact = (vp->v_iflag & VI_OWEINACT);
      VI_UNLOCK(vp);
      /*
       * Clean out any buffers associated with the vnode.
       * If the flush fails, just toss the buffers.
       */
      mp = NULL;
      if (!TAILQ_EMPTY(&vp->v_bufobj.bo_dirty.bv_hd))
            (void) vn_start_secondary_write(vp, &mp, V_WAIT);
      if (vinvalbuf(vp, V_SAVE, td, 0, 0) != 0)
            vinvalbuf(vp, 0, td, 0, 0);

      /*
       * If purging an active vnode, it must be closed and
       * deactivated before being reclaimed.
       */
      if (active)
            VOP_CLOSE(vp, FNONBLOCK, NOCRED, td);
      if (oweinact || active) {
            VI_LOCK(vp);
            if ((vp->v_iflag & VI_DOINGINACT) == 0)
                  vinactive(vp, td);
            VI_UNLOCK(vp);
      }
      /*
       * Reclaim the vnode.
       */
      if (VOP_RECLAIM(vp, td))
            panic("vgone: cannot reclaim");
      if (mp != NULL)
            vn_finished_secondary_write(mp);
      VNASSERT(vp->v_object == NULL, vp,
          ("vop_reclaim left v_object vp=%p, tag=%s", vp, vp->v_tag));
      /*
       * Delete from old mount point vnode list.
       */
      delmntque(vp);
      cache_purge(vp);
      /*
       * Done with purge, reset to the standard lock and invalidate
       * the vnode.
       */
      VI_LOCK(vp);
      vp->v_vnlock = &vp->v_lock;
      vp->v_op = &dead_vnodeops;
      vp->v_tag = "none";
      vp->v_type = VBAD;
}

/*
 * Calculate the total number of references to a special device.
 */
int
vcount(vp)
      struct vnode *vp;
{
      int count;

      dev_lock();
      count = vp->v_rdev->si_usecount;
      dev_unlock();
      return (count);
}

/*
 * Same as above, but using the struct cdev *as argument
 */
int
count_dev(dev)
      struct cdev *dev;
{
      int count;

      dev_lock();
      count = dev->si_usecount;
      dev_unlock();
      return(count);
}

/*
 * Print out a description of a vnode.
 */
static char *typename[] =
{"VNON", "VREG", "VDIR", "VBLK", "VCHR", "VLNK", "VSOCK", "VFIFO", "VBAD",
 "VMARKER"};

void
vn_printf(struct vnode *vp, const char *fmt, ...)
{
      va_list ap;
      char buf[96];

      va_start(ap, fmt);
      vprintf(fmt, ap);
      va_end(ap);
      printf("%p: ", (void *)vp);
      printf("tag %s, type %s\n", vp->v_tag, typename[vp->v_type]);
      printf("    usecount %d, writecount %d, refcount %d mountedhere %p\n",
          vp->v_usecount, vp->v_writecount, vp->v_holdcnt, vp->v_mountedhere);
      buf[0] = '\0';
      buf[1] = '\0';
      if (vp->v_vflag & VV_ROOT)
            strcat(buf, "|VV_ROOT");
      if (vp->v_vflag & VV_TEXT)
            strcat(buf, "|VV_TEXT");
      if (vp->v_vflag & VV_SYSTEM)
            strcat(buf, "|VV_SYSTEM");
      if (vp->v_iflag & VI_DOOMED)
            strcat(buf, "|VI_DOOMED");
      if (vp->v_iflag & VI_FREE)
            strcat(buf, "|VI_FREE");
      printf("    flags (%s)\n", buf + 1);
      if (mtx_owned(VI_MTX(vp)))
            printf(" VI_LOCKed");
      if (vp->v_object != NULL)
            printf("    v_object %p ref %d pages %d\n",
                vp->v_object, vp->v_object->ref_count,
                vp->v_object->resident_page_count);
      printf("    ");
      lockmgr_printinfo(vp->v_vnlock);
      printf("\n");
      if (vp->v_data != NULL)
            VOP_PRINT(vp);
}

#ifdef DDB
/*
 * List all of the locked vnodes in the system.
 * Called when debugging the kernel.
 */
DB_SHOW_COMMAND(lockedvnods, lockedvnodes)
{
      struct mount *mp, *nmp;
      struct vnode *vp;

      /*
       * Note: because this is DDB, we can't obey the locking semantics
       * for these structures, which means we could catch an inconsistent
       * state and dereference a nasty pointer.  Not much to be done
       * about that.
       */
      printf("Locked vnodes\n");
      for (mp = TAILQ_FIRST(&mountlist); mp != NULL; mp = nmp) {
            nmp = TAILQ_NEXT(mp, mnt_list);
            TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
                  if (vp->v_type != VMARKER && VOP_ISLOCKED(vp, NULL))
                        vprint("", vp);
            }
            nmp = TAILQ_NEXT(mp, mnt_list);
      }
}

/*
 * Show details about the given vnode.
 */
DB_SHOW_COMMAND(vnode, db_show_vnode)
{
      struct vnode *vp;

      if (!have_addr)
            return;
      vp = (struct vnode *)addr;
      vn_printf(vp, "vnode ");
}
#endif      /* DDB */

/*
 * Fill in a struct xvfsconf based on a struct vfsconf.
 */
static void
vfsconf2x(struct vfsconf *vfsp, struct xvfsconf *xvfsp)
{

      strcpy(xvfsp->vfc_name, vfsp->vfc_name);
      xvfsp->vfc_typenum = vfsp->vfc_typenum;
      xvfsp->vfc_refcount = vfsp->vfc_refcount;
      xvfsp->vfc_flags = vfsp->vfc_flags;
      /*
       * These are unused in userland, we keep them
       * to not break binary compatibility.
       */
      xvfsp->vfc_vfsops = NULL;
      xvfsp->vfc_next = NULL;
}

/*
 * Top level filesystem related information gathering.
 */
static int
sysctl_vfs_conflist(SYSCTL_HANDLER_ARGS)
{
      struct vfsconf *vfsp;
      struct xvfsconf xvfsp;
      int error;

      error = 0;
      TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
            bzero(&xvfsp, sizeof(xvfsp));
            vfsconf2x(vfsp, &xvfsp);
            error = SYSCTL_OUT(req, &xvfsp, sizeof xvfsp);
            if (error)
                  break;
      }
      return (error);
}

SYSCTL_PROC(_vfs, OID_AUTO, conflist, CTLFLAG_RD, NULL, 0, sysctl_vfs_conflist,
    "S,xvfsconf", "List of all configured filesystems");

#ifndef BURN_BRIDGES
static int  sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS);

static int
vfs_sysctl(SYSCTL_HANDLER_ARGS)
{
      int *name = (int *)arg1 - 1;  /* XXX */
      u_int namelen = arg2 + 1;     /* XXX */
      struct vfsconf *vfsp;
      struct xvfsconf xvfsp;

      printf("WARNING: userland calling deprecated sysctl, "
          "please rebuild world\n");

#if 1 || defined(COMPAT_PRELITE2)
      /* Resolve ambiguity between VFS_VFSCONF and VFS_GENERIC. */
      if (namelen == 1)
            return (sysctl_ovfs_conf(oidp, arg1, arg2, req));
#endif

      switch (name[1]) {
      case VFS_MAXTYPENUM:
            if (namelen != 2)
                  return (ENOTDIR);
            return (SYSCTL_OUT(req, &maxvfsconf, sizeof(int)));
      case VFS_CONF:
            if (namelen != 3)
                  return (ENOTDIR); /* overloaded */
            TAILQ_FOREACH(vfsp, &vfsconf, vfc_list)
                  if (vfsp->vfc_typenum == name[2])
                        break;
            if (vfsp == NULL)
                  return (EOPNOTSUPP);
            bzero(&xvfsp, sizeof(xvfsp));
            vfsconf2x(vfsp, &xvfsp);
            return (SYSCTL_OUT(req, &xvfsp, sizeof(xvfsp)));
      }
      return (EOPNOTSUPP);
}

static SYSCTL_NODE(_vfs, VFS_GENERIC, generic, CTLFLAG_RD | CTLFLAG_SKIP,
      vfs_sysctl, "Generic filesystem");

#if 1 || defined(COMPAT_PRELITE2)

static int
sysctl_ovfs_conf(SYSCTL_HANDLER_ARGS)
{
      int error;
      struct vfsconf *vfsp;
      struct ovfsconf ovfs;

      TAILQ_FOREACH(vfsp, &vfsconf, vfc_list) {
            bzero(&ovfs, sizeof(ovfs));
            ovfs.vfc_vfsops = vfsp->vfc_vfsops; /* XXX used as flag */
            strcpy(ovfs.vfc_name, vfsp->vfc_name);
            ovfs.vfc_index = vfsp->vfc_typenum;
            ovfs.vfc_refcount = vfsp->vfc_refcount;
            ovfs.vfc_flags = vfsp->vfc_flags;
            error = SYSCTL_OUT(req, &ovfs, sizeof ovfs);
            if (error)
                  return error;
      }
      return 0;
}

#endif /* 1 || COMPAT_PRELITE2 */
#endif /* !BURN_BRIDGES */

#define KINFO_VNODESLOP       10
#ifdef notyet
/*
 * Dump vnode list (via sysctl).
 */
/* ARGSUSED */
static int
sysctl_vnode(SYSCTL_HANDLER_ARGS)
{
      struct xvnode *xvn;
      struct thread *td = req->td;
      struct mount *mp;
      struct vnode *vp;
      int error, len, n;

      /*
       * Stale numvnodes access is not fatal here.
       */
      req->lock = 0;
      len = (numvnodes + KINFO_VNODESLOP) * sizeof *xvn;
      if (!req->oldptr)
            /* Make an estimate */
            return (SYSCTL_OUT(req, 0, len));

      error = sysctl_wire_old_buffer(req, 0);
      if (error != 0)
            return (error);
      xvn = malloc(len, M_TEMP, M_ZERO | M_WAITOK);
      n = 0;
      mtx_lock(&mountlist_mtx);
      TAILQ_FOREACH(mp, &mountlist, mnt_list) {
            if (vfs_busy(mp, LK_NOWAIT, &mountlist_mtx, td))
                  continue;
            MNT_ILOCK(mp);
            TAILQ_FOREACH(vp, &mp->mnt_nvnodelist, v_nmntvnodes) {
                  if (n == len)
                        break;
                  vref(vp);
                  xvn[n].xv_size = sizeof *xvn;
                  xvn[n].xv_vnode = vp;
                  xvn[n].xv_id = 0; /* XXX compat */
#define XV_COPY(field) xvn[n].xv_##field = vp->v_##field
                  XV_COPY(usecount);
                  XV_COPY(writecount);
                  XV_COPY(holdcnt);
                  XV_COPY(mount);
                  XV_COPY(numoutput);
                  XV_COPY(type);
#undef XV_COPY
                  xvn[n].xv_flag = vp->v_vflag;

                  switch (vp->v_type) {
                  case VREG:
                  case VDIR:
                  case VLNK:
                        break;
                  case VBLK:
                  case VCHR:
                        if (vp->v_rdev == NULL) {
                              vrele(vp);
                              continue;
                        }
                        xvn[n].xv_dev = dev2udev(vp->v_rdev);
                        break;
                  case VSOCK:
                        xvn[n].xv_socket = vp->v_socket;
                        break;
                  case VFIFO:
                        xvn[n].xv_fifo = vp->v_fifoinfo;
                        break;
                  case VNON:
                  case VBAD:
                  default:
                        /* shouldn't happen? */
                        vrele(vp);
                        continue;
                  }
                  vrele(vp);
                  ++n;
            }
            MNT_IUNLOCK(mp);
            mtx_lock(&mountlist_mtx);
            vfs_unbusy(mp, td);
            if (n == len)
                  break;
      }
      mtx_unlock(&mountlist_mtx);

      error = SYSCTL_OUT(req, xvn, n * sizeof *xvn);
      free(xvn, M_TEMP);
      return (error);
}

SYSCTL_PROC(_kern, KERN_VNODE, vnode, CTLTYPE_OPAQUE|CTLFLAG_RD,
      0, 0, sysctl_vnode, "S,xvnode", "");
#endif

/*
 * Unmount all filesystems. The list is traversed in reverse order
 * of mounting to avoid dependencies.
 */
void
vfs_unmountall()
{
      struct mount *mp;
      struct thread *td;
      int error;

      KASSERT(curthread != NULL, ("vfs_unmountall: NULL curthread"));
      td = curthread;
      /*
       * Since this only runs when rebooting, it is not interlocked.
       */
      while(!TAILQ_EMPTY(&mountlist)) {
            mp = TAILQ_LAST(&mountlist, mntlist);
            error = dounmount(mp, MNT_FORCE, td);
            if (error) {
                  TAILQ_REMOVE(&mountlist, mp, mnt_list);
                  /*
                   * XXX: Due to the way in which we mount the root
                   * file system off of devfs, devfs will generate a
                   * "busy" warning when we try to unmount it before
                   * the root.  Don't print a warning as a result in
                   * order to avoid false positive errors that may
                   * cause needless upset.
                   */
                  if (strcmp(mp->mnt_vfc->vfc_name, "devfs") != 0) {
                        printf("unmount of %s failed (",
                            mp->mnt_stat.f_mntonname);
                        if (error == EBUSY)
                              printf("BUSY)\n");
                        else
                              printf("%d)\n", error);
                  }
            } else {
                  /* The unmount has removed mp from the mountlist */
            }
      }
}

/*
 * perform msync on all vnodes under a mount point
 * the mount point must be locked.
 */
void
vfs_msync(struct mount *mp, int flags)
{
      struct vnode *vp, *mvp;
      struct vm_object *obj;

      MNT_ILOCK(mp);
      MNT_VNODE_FOREACH(vp, mp, mvp) {
            VI_LOCK(vp);
            if ((vp->v_iflag & VI_OBJDIRTY) &&
                (flags == MNT_WAIT || VOP_ISLOCKED(vp, NULL) == 0)) {
                  MNT_IUNLOCK(mp);
                  if (!vget(vp,
                      LK_EXCLUSIVE | LK_RETRY | LK_INTERLOCK,
                      curthread)) {
                        if (vp->v_vflag & VV_NOSYNC) {      /* unlinked */
                              vput(vp);
                              MNT_ILOCK(mp);
                              continue;
                        }

                        obj = vp->v_object;
                        if (obj != NULL) {
                              VM_OBJECT_LOCK(obj);
                              vm_object_page_clean(obj, 0, 0,
                                  flags == MNT_WAIT ?
                                  OBJPC_SYNC : OBJPC_NOSYNC);
                              VM_OBJECT_UNLOCK(obj);
                        }
                        vput(vp);
                  }
                  MNT_ILOCK(mp);
            } else
                  VI_UNLOCK(vp);
      }
      MNT_IUNLOCK(mp);
}

/*
 * Mark a vnode as free, putting it up for recycling.
 */
static void
vfree(struct vnode *vp)
{

      CTR1(KTR_VFS, "vfree vp %p", vp);
      ASSERT_VI_LOCKED(vp, "vfree");
      mtx_lock(&vnode_free_list_mtx);
      VNASSERT(vp->v_op != NULL, vp, ("vfree: vnode already reclaimed."));
      VNASSERT((vp->v_iflag & VI_FREE) == 0, vp, ("vnode already free"));
      VNASSERT(VSHOULDFREE(vp), vp, ("vfree: freeing when we shouldn't"));
      VNASSERT((vp->v_iflag & VI_DOOMED) == 0, vp,
          ("vfree: Freeing doomed vnode"));
      if (vp->v_iflag & VI_AGE) {
            TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
      } else {
            TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
      }
      freevnodes++;
      vp->v_iflag &= ~VI_AGE;
      vp->v_iflag |= VI_FREE;
      mtx_unlock(&vnode_free_list_mtx);
}

/*
 * Opposite of vfree() - mark a vnode as in use.
 */
static void
vbusy(struct vnode *vp)
{
      CTR1(KTR_VFS, "vbusy vp %p", vp);
      ASSERT_VI_LOCKED(vp, "vbusy");
      VNASSERT((vp->v_iflag & VI_FREE) != 0, vp, ("vnode not free"));
      VNASSERT(vp->v_op != NULL, vp, ("vbusy: vnode already reclaimed."));

      mtx_lock(&vnode_free_list_mtx);
      TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
      freevnodes--;
      vp->v_iflag &= ~(VI_FREE|VI_AGE);
      mtx_unlock(&vnode_free_list_mtx);
}

/*
 * Initalize per-vnode helper structure to hold poll-related state.
 */
void
v_addpollinfo(struct vnode *vp)
{
      struct vpollinfo *vi;

      vi = uma_zalloc(vnodepoll_zone, M_WAITOK);
      if (vp->v_pollinfo != NULL) {
            uma_zfree(vnodepoll_zone, vi);
            return;
      }
      vp->v_pollinfo = vi;
      mtx_init(&vp->v_pollinfo->vpi_lock, "vnode pollinfo", NULL, MTX_DEF);
      knlist_init(&vp->v_pollinfo->vpi_selinfo.si_note, vp, vfs_knllock,
          vfs_knlunlock, vfs_knllocked);
}

/*
 * Record a process's interest in events which might happen to
 * a vnode.  Because poll uses the historic select-style interface
 * internally, this routine serves as both the ``check for any
 * pending events'' and the ``record my interest in future events''
 * functions.  (These are done together, while the lock is held,
 * to avoid race conditions.)
 */
int
vn_pollrecord(vp, td, events)
      struct vnode *vp;
      struct thread *td;
      short events;
{

      if (vp->v_pollinfo == NULL)
            v_addpollinfo(vp);
      mtx_lock(&vp->v_pollinfo->vpi_lock);
      if (vp->v_pollinfo->vpi_revents & events) {
            /*
             * This leaves events we are not interested
             * in available for the other process which
             * which presumably had requested them
             * (otherwise they would never have been
             * recorded).
             */
            events &= vp->v_pollinfo->vpi_revents;
            vp->v_pollinfo->vpi_revents &= ~events;

            mtx_unlock(&vp->v_pollinfo->vpi_lock);
            return events;
      }
      vp->v_pollinfo->vpi_events |= events;
      selrecord(td, &vp->v_pollinfo->vpi_selinfo);
      mtx_unlock(&vp->v_pollinfo->vpi_lock);
      return 0;
}

/*
 * Routine to create and manage a filesystem syncer vnode.
 */
#define sync_close ((int (*)(struct  vop_close_args *))nullop)
static int  sync_fsync(struct  vop_fsync_args *);
static int  sync_inactive(struct  vop_inactive_args *);
static int  sync_reclaim(struct  vop_reclaim_args *);

static struct vop_vector sync_vnodeops = {
      .vop_bypass =     VOP_EOPNOTSUPP,
      .vop_close =      sync_close,       /* close */
      .vop_fsync =      sync_fsync,       /* fsync */
      .vop_inactive =   sync_inactive,    /* inactive */
      .vop_reclaim =    sync_reclaim,     /* reclaim */
      .vop_lock = vop_stdlock,      /* lock */
      .vop_unlock =     vop_stdunlock,    /* unlock */
      .vop_islocked =   vop_stdislocked,  /* islocked */
};

/*
 * Create a new filesystem syncer vnode for the specified mount point.
 */
int
vfs_allocate_syncvnode(mp)
      struct mount *mp;
{
      struct vnode *vp;
      static long start, incr, next;
      int error;

      /* Allocate a new vnode */
      if ((error = getnewvnode("syncer", mp, &sync_vnodeops, &vp)) != 0) {
            mp->mnt_syncer = NULL;
            return (error);
      }
      vp->v_type = VNON;
      /*
       * Place the vnode onto the syncer worklist. We attempt to
       * scatter them about on the list so that they will go off
       * at evenly distributed times even if all the filesystems
       * are mounted at once.
       */
      next += incr;
      if (next == 0 || next > syncer_maxdelay) {
            start /= 2;
            incr /= 2;
            if (start == 0) {
                  start = syncer_maxdelay / 2;
                  incr = syncer_maxdelay;
            }
            next = start;
      }
      VI_LOCK(vp);
      vn_syncer_add_to_worklist(&vp->v_bufobj,
          syncdelay > 0 ? next % syncdelay : 0);
      /* XXX - vn_syncer_add_to_worklist() also grabs and drops sync_mtx. */
      mtx_lock(&sync_mtx);
      sync_vnode_count++;
      mtx_unlock(&sync_mtx);
      VI_UNLOCK(vp);
      mp->mnt_syncer = vp;
      return (0);
}

/*
 * Do a lazy sync of the filesystem.
 */
static int
sync_fsync(ap)
      struct vop_fsync_args /* {
            struct vnode *a_vp;
            struct ucred *a_cred;
            int a_waitfor;
            struct thread *a_td;
      } */ *ap;
{
      struct vnode *syncvp = ap->a_vp;
      struct mount *mp = syncvp->v_mount;
      struct thread *td = ap->a_td;
      int error, asyncflag;
      struct bufobj *bo;

      /*
       * We only need to do something if this is a lazy evaluation.
       */
      if (ap->a_waitfor != MNT_LAZY)
            return (0);

      /*
       * Move ourselves to the back of the sync list.
       */
      bo = &syncvp->v_bufobj;
      BO_LOCK(bo);
      vn_syncer_add_to_worklist(bo, syncdelay);
      BO_UNLOCK(bo);

      /*
       * Walk the list of vnodes pushing all that are dirty and
       * not already on the sync list.
       */
      mtx_lock(&mountlist_mtx);
      if (vfs_busy(mp, LK_EXCLUSIVE | LK_NOWAIT, &mountlist_mtx, td) != 0) {
            mtx_unlock(&mountlist_mtx);
            return (0);
      }
      if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) {
            vfs_unbusy(mp, td);
            return (0);
      }
      MNT_ILOCK(mp);
      asyncflag = mp->mnt_flag & MNT_ASYNC;
      mp->mnt_flag &= ~MNT_ASYNC;
      MNT_IUNLOCK(mp);
      vfs_msync(mp, MNT_NOWAIT);
      error = VFS_SYNC(mp, MNT_LAZY, td);
      MNT_ILOCK(mp);
      if (asyncflag)
            mp->mnt_flag |= MNT_ASYNC;
      MNT_IUNLOCK(mp);
      vn_finished_write(mp);
      vfs_unbusy(mp, td);
      return (error);
}

/*
 * The syncer vnode is no referenced.
 */
static int
sync_inactive(ap)
      struct vop_inactive_args /* {
            struct vnode *a_vp;
            struct thread *a_td;
      } */ *ap;
{

      vgone(ap->a_vp);
      return (0);
}

/*
 * The syncer vnode is no longer needed and is being decommissioned.
 *
 * Modifications to the worklist must be protected by sync_mtx.
 */
static int
sync_reclaim(ap)
      struct vop_reclaim_args /* {
            struct vnode *a_vp;
      } */ *ap;
{
      struct vnode *vp = ap->a_vp;
      struct bufobj *bo;

      VI_LOCK(vp);
      bo = &vp->v_bufobj;
      vp->v_mount->mnt_syncer = NULL;
      if (bo->bo_flag & BO_ONWORKLST) {
            mtx_lock(&sync_mtx);
            LIST_REMOVE(bo, bo_synclist);
            syncer_worklist_len--;
            sync_vnode_count--;
            mtx_unlock(&sync_mtx);
            bo->bo_flag &= ~BO_ONWORKLST;
      }
      VI_UNLOCK(vp);

      return (0);
}

/*
 * Check if vnode represents a disk device
 */
int
vn_isdisk(vp, errp)
      struct vnode *vp;
      int *errp;
{
      int error;

      error = 0;
      dev_lock();
      if (vp->v_type != VCHR)
            error = ENOTBLK;
      else if (vp->v_rdev == NULL)
            error = ENXIO;
      else if (vp->v_rdev->si_devsw == NULL)
            error = ENXIO;
      else if (!(vp->v_rdev->si_devsw->d_flags & D_DISK))
            error = ENOTBLK;
      dev_unlock();
      if (errp != NULL)
            *errp = error;
      return (error == 0);
}

/*
 * Common filesystem object access control check routine.  Accepts a
 * vnode's type, "mode", uid and gid, requested access mode, credentials,
 * and optional call-by-reference privused argument allowing vaccess()
 * to indicate to the caller whether privilege was used to satisfy the
 * request (obsoleted).  Returns 0 on success, or an errno on failure.
 */
int
vaccess(type, file_mode, file_uid, file_gid, acc_mode, cred, privused)
      enum vtype type;
      mode_t file_mode;
      uid_t file_uid;
      gid_t file_gid;
      mode_t acc_mode;
      struct ucred *cred;
      int *privused;
{
      mode_t dac_granted;
#ifdef CAPABILITIES
      mode_t cap_granted;
#endif

      /*
       * Look for a normal, non-privileged way to access the file/directory
       * as requested.  If it exists, go with that.
       */

      if (privused != NULL)
            *privused = 0;

      dac_granted = 0;

      /* Check the owner. */
      if (cred->cr_uid == file_uid) {
            dac_granted |= VADMIN;
            if (file_mode & S_IXUSR)
                  dac_granted |= VEXEC;
            if (file_mode & S_IRUSR)
                  dac_granted |= VREAD;
            if (file_mode & S_IWUSR)
                  dac_granted |= (VWRITE | VAPPEND);

            if ((acc_mode & dac_granted) == acc_mode)
                  return (0);

            goto privcheck;
      }

      /* Otherwise, check the groups (first match) */
      if (groupmember(file_gid, cred)) {
            if (file_mode & S_IXGRP)
                  dac_granted |= VEXEC;
            if (file_mode & S_IRGRP)
                  dac_granted |= VREAD;
            if (file_mode & S_IWGRP)
                  dac_granted |= (VWRITE | VAPPEND);

            if ((acc_mode & dac_granted) == acc_mode)
                  return (0);

            goto privcheck;
      }

      /* Otherwise, check everyone else. */
      if (file_mode & S_IXOTH)
            dac_granted |= VEXEC;
      if (file_mode & S_IROTH)
            dac_granted |= VREAD;
      if (file_mode & S_IWOTH)
            dac_granted |= (VWRITE | VAPPEND);
      if ((acc_mode & dac_granted) == acc_mode)
            return (0);

privcheck:
      if (!suser_cred(cred, SUSER_ALLOWJAIL)) {
            /* XXX audit: privilege used */
            if (privused != NULL)
                  *privused = 1;
            return (0);
      }

#ifdef CAPABILITIES
      /*
       * Build a capability mask to determine if the set of capabilities
       * satisfies the requirements when combined with the granted mask
       * from above.
       * For each capability, if the capability is required, bitwise
       * or the request type onto the cap_granted mask.
       */
      cap_granted = 0;

      if (type == VDIR) {
            /*
             * For directories, use CAP_DAC_READ_SEARCH to satisfy
             * VEXEC requests, instead of CAP_DAC_EXECUTE.
             */
            if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
                !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
                  cap_granted |= VEXEC;
      } else {
            if ((acc_mode & VEXEC) && ((dac_granted & VEXEC) == 0) &&
                !cap_check(cred, NULL, CAP_DAC_EXECUTE, SUSER_ALLOWJAIL))
                  cap_granted |= VEXEC;
      }

      if ((acc_mode & VREAD) && ((dac_granted & VREAD) == 0) &&
          !cap_check(cred, NULL, CAP_DAC_READ_SEARCH, SUSER_ALLOWJAIL))
            cap_granted |= VREAD;

      if ((acc_mode & VWRITE) && ((dac_granted & VWRITE) == 0) &&
          !cap_check(cred, NULL, CAP_DAC_WRITE, SUSER_ALLOWJAIL))
            cap_granted |= (VWRITE | VAPPEND);

      if ((acc_mode & VADMIN) && ((dac_granted & VADMIN) == 0) &&
          !cap_check(cred, NULL, CAP_FOWNER, SUSER_ALLOWJAIL))
            cap_granted |= VADMIN;

      if ((acc_mode & (cap_granted | dac_granted)) == acc_mode) {
            /* XXX audit: privilege used */
            if (privused != NULL)
                  *privused = 1;
            return (0);
      }
#endif

      return ((acc_mode & VADMIN) ? EPERM : EACCES);
}

/*
 * Credential check based on process requesting service, and per-attribute
 * permissions.
 */
int
extattr_check_cred(struct vnode *vp, int attrnamespace,
    struct ucred *cred, struct thread *td, int access)
{

      /*
       * Kernel-invoked always succeeds.
       */
      if (cred == NOCRED)
            return (0);

      /*
       * Do not allow privileged processes in jail to directly
       * manipulate system attributes.
       *
       * XXX What capability should apply here?
       * Probably CAP_SYS_SETFFLAG.
       */
      switch (attrnamespace) {
      case EXTATTR_NAMESPACE_SYSTEM:
            /* Potentially should be: return (EPERM); */
            return (suser_cred(cred, 0));
      case EXTATTR_NAMESPACE_USER:
            return (VOP_ACCESS(vp, access, cred, td));
      default:
            return (EPERM);
      }
}

#ifdef DEBUG_VFS_LOCKS
/*
 * This only exists to supress warnings from unlocked specfs accesses.  It is
 * no longer ok to have an unlocked VFS.
 */
#define     IGNORE_LOCK(vp) ((vp)->v_type == VCHR || (vp)->v_type == VBAD)

int vfs_badlock_ddb = 1;      /* Drop into debugger on violation. */
SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_ddb, CTLFLAG_RW, &vfs_badlock_ddb, 0, "");

int vfs_badlock_mutex = 1;    /* Check for interlock across VOPs. */
SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_mutex, CTLFLAG_RW, &vfs_badlock_mutex, 0, "");

int vfs_badlock_print = 1;    /* Print lock violations. */
SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_print, CTLFLAG_RW, &vfs_badlock_print, 0, "");

#ifdef KDB
int vfs_badlock_backtrace = 1;      /* Print backtrace at lock violations. */
SYSCTL_INT(_debug, OID_AUTO, vfs_badlock_backtrace, CTLFLAG_RW, &vfs_badlock_backtrace, 0, "");
#endif

static void
vfs_badlock(const char *msg, const char *str, struct vnode *vp)
{

#ifdef KDB
      if (vfs_badlock_backtrace)
            kdb_backtrace();
#endif
      if (vfs_badlock_print)
            printf("%s: %p %s\n", str, (void *)vp, msg);
      if (vfs_badlock_ddb)
            kdb_enter("lock violation");
}

void
assert_vi_locked(struct vnode *vp, const char *str)
{

      if (vfs_badlock_mutex && !mtx_owned(VI_MTX(vp)))
            vfs_badlock("interlock is not locked but should be", str, vp);
}

void
assert_vi_unlocked(struct vnode *vp, const char *str)
{

      if (vfs_badlock_mutex && mtx_owned(VI_MTX(vp)))
            vfs_badlock("interlock is locked but should not be", str, vp);
}

void
assert_vop_locked(struct vnode *vp, const char *str)
{

      if (vp && !IGNORE_LOCK(vp) && VOP_ISLOCKED(vp, NULL) == 0)
            vfs_badlock("is not locked but should be", str, vp);
}

void
assert_vop_unlocked(struct vnode *vp, const char *str)
{

      if (vp && !IGNORE_LOCK(vp) &&
          VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE)
            vfs_badlock("is locked but should not be", str, vp);
}

void
assert_vop_elocked(struct vnode *vp, const char *str)
{

      if (vp && !IGNORE_LOCK(vp) &&
          VOP_ISLOCKED(vp, curthread) != LK_EXCLUSIVE)
            vfs_badlock("is not exclusive locked but should be", str, vp);
}

#if 0
void
assert_vop_elocked_other(struct vnode *vp, const char *str)
{

      if (vp && !IGNORE_LOCK(vp) &&
          VOP_ISLOCKED(vp, curthread) != LK_EXCLOTHER)
            vfs_badlock("is not exclusive locked by another thread",
                str, vp);
}

void
assert_vop_slocked(struct vnode *vp, const char *str)
{

      if (vp && !IGNORE_LOCK(vp) &&
          VOP_ISLOCKED(vp, curthread) != LK_SHARED)
            vfs_badlock("is not locked shared but should be", str, vp);
}
#endif /* 0 */
#endif /* DEBUG_VFS_LOCKS */

void
vop_rename_pre(void *ap)
{
      struct vop_rename_args *a = ap;

#ifdef DEBUG_VFS_LOCKS
      if (a->a_tvp)
            ASSERT_VI_UNLOCKED(a->a_tvp, "VOP_RENAME");
      ASSERT_VI_UNLOCKED(a->a_tdvp, "VOP_RENAME");
      ASSERT_VI_UNLOCKED(a->a_fvp, "VOP_RENAME");
      ASSERT_VI_UNLOCKED(a->a_fdvp, "VOP_RENAME");

      /* Check the source (from). */
      if (a->a_tdvp != a->a_fdvp)
            ASSERT_VOP_UNLOCKED(a->a_fdvp, "vop_rename: fdvp locked");
      if (a->a_tvp != a->a_fvp)
            ASSERT_VOP_UNLOCKED(a->a_fvp, "vop_rename: tvp locked");

      /* Check the target. */
      if (a->a_tvp)
            ASSERT_VOP_LOCKED(a->a_tvp, "vop_rename: tvp not locked");
      ASSERT_VOP_LOCKED(a->a_tdvp, "vop_rename: tdvp not locked");
#endif
      if (a->a_tdvp != a->a_fdvp)
            vhold(a->a_fdvp);
      if (a->a_tvp != a->a_fvp)
            vhold(a->a_fvp);
      vhold(a->a_tdvp);
      if (a->a_tvp)
            vhold(a->a_tvp);
}

void
vop_strategy_pre(void *ap)
{
#ifdef DEBUG_VFS_LOCKS
      struct vop_strategy_args *a;
      struct buf *bp;

      a = ap;
      bp = a->a_bp;

      /*
       * Cluster ops lock their component buffers but not the IO container.
       */
      if ((bp->b_flags & B_CLUSTER) != 0)
            return;

      if (BUF_REFCNT(bp) < 1) {
            if (vfs_badlock_print)
                  printf(
                      "VOP_STRATEGY: bp is not locked but should be\n");
            if (vfs_badlock_ddb)
                  kdb_enter("lock violation");
      }
#endif
}

void
vop_lookup_pre(void *ap)
{
#ifdef DEBUG_VFS_LOCKS
      struct vop_lookup_args *a;
      struct vnode *dvp;

      a = ap;
      dvp = a->a_dvp;
      ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
      ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");
#endif
}

void
vop_lookup_post(void *ap, int rc)
{
#ifdef DEBUG_VFS_LOCKS
      struct vop_lookup_args *a;
      struct vnode *dvp;
      struct vnode *vp;

      a = ap;
      dvp = a->a_dvp;
      vp = *(a->a_vpp);

      ASSERT_VI_UNLOCKED(dvp, "VOP_LOOKUP");
      ASSERT_VOP_LOCKED(dvp, "VOP_LOOKUP");

      if (!rc)
            ASSERT_VOP_LOCKED(vp, "VOP_LOOKUP (child)");
#endif
}

void
vop_lock_pre(void *ap)
{
#ifdef DEBUG_VFS_LOCKS
      struct vop_lock_args *a = ap;

      if ((a->a_flags & LK_INTERLOCK) == 0)
            ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
      else
            ASSERT_VI_LOCKED(a->a_vp, "VOP_LOCK");
#endif
}

void
vop_lock_post(void *ap, int rc)
{
#ifdef DEBUG_VFS_LOCKS
      struct vop_lock_args *a = ap;

      ASSERT_VI_UNLOCKED(a->a_vp, "VOP_LOCK");
      if (rc == 0)
            ASSERT_VOP_LOCKED(a->a_vp, "VOP_LOCK");
#endif
}

void
vop_unlock_pre(void *ap)
{
#ifdef DEBUG_VFS_LOCKS
      struct vop_unlock_args *a = ap;

      if (a->a_flags & LK_INTERLOCK)
            ASSERT_VI_LOCKED(a->a_vp, "VOP_UNLOCK");
      ASSERT_VOP_LOCKED(a->a_vp, "VOP_UNLOCK");
#endif
}

void
vop_unlock_post(void *ap, int rc)
{
#ifdef DEBUG_VFS_LOCKS
      struct vop_unlock_args *a = ap;

      if (a->a_flags & LK_INTERLOCK)
            ASSERT_VI_UNLOCKED(a->a_vp, "VOP_UNLOCK");
#endif
}

void
vop_create_post(void *ap, int rc)
{
      struct vop_create_args *a = ap;

      if (!rc)
            VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE); 
}

void
vop_link_post(void *ap, int rc)
{
      struct vop_link_args *a = ap;
      
      if (!rc) {
            VFS_KNOTE_LOCKED(a->a_vp, NOTE_LINK); 
            VFS_KNOTE_LOCKED(a->a_tdvp, NOTE_WRITE);
      }
}

void
vop_mkdir_post(void *ap, int rc)
{
      struct vop_mkdir_args *a = ap;

      if (!rc)
            VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
}

void
vop_mknod_post(void *ap, int rc)
{
      struct vop_mknod_args *a = ap;

      if (!rc)
            VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
}

void
vop_remove_post(void *ap, int rc)
{
      struct vop_remove_args *a = ap;

      if (!rc) {
            VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
            VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
      }
}

void
vop_rename_post(void *ap, int rc)
{
      struct vop_rename_args *a = ap;

      if (!rc) {
            VFS_KNOTE_UNLOCKED(a->a_fdvp, NOTE_WRITE);
            VFS_KNOTE_UNLOCKED(a->a_tdvp, NOTE_WRITE);
            VFS_KNOTE_UNLOCKED(a->a_fvp, NOTE_RENAME);
            if (a->a_tvp)
                  VFS_KNOTE_UNLOCKED(a->a_tvp, NOTE_DELETE);
      }
      if (a->a_tdvp != a->a_fdvp)
            vdrop(a->a_fdvp);
      if (a->a_tvp != a->a_fvp)
            vdrop(a->a_fvp);
      vdrop(a->a_tdvp);
      if (a->a_tvp)
            vdrop(a->a_tvp);
}

void
vop_rmdir_post(void *ap, int rc)
{
      struct vop_rmdir_args *a = ap;

      if (!rc) {
            VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE | NOTE_LINK);
            VFS_KNOTE_LOCKED(a->a_vp, NOTE_DELETE);
      }
}

void
vop_setattr_post(void *ap, int rc)
{
      struct vop_setattr_args *a = ap;

      if (!rc)
            VFS_KNOTE_LOCKED(a->a_vp, NOTE_ATTRIB);
}

void
vop_symlink_post(void *ap, int rc)
{
      struct vop_symlink_args *a = ap;
      
      if (!rc)
            VFS_KNOTE_LOCKED(a->a_dvp, NOTE_WRITE);
}

static struct knlist fs_knlist;

static void
vfs_event_init(void *arg)
{
      knlist_init(&fs_knlist, NULL, NULL, NULL, NULL);
}
/* XXX - correct order? */
SYSINIT(vfs_knlist, SI_SUB_VFS, SI_ORDER_ANY, vfs_event_init, NULL);

void
vfs_event_signal(fsid_t *fsid, u_int32_t event, intptr_t data __unused)
{

      KNOTE_UNLOCKED(&fs_knlist, event);
}

static int  filt_fsattach(struct knote *kn);
static void filt_fsdetach(struct knote *kn);
static int  filt_fsevent(struct knote *kn, long hint);

struct filterops fs_filtops =
      { 0, filt_fsattach, filt_fsdetach, filt_fsevent };

static int
filt_fsattach(struct knote *kn)
{

      kn->kn_flags |= EV_CLEAR;
      knlist_add(&fs_knlist, kn, 0);
      return (0);
}

static void
filt_fsdetach(struct knote *kn)
{

      knlist_remove(&fs_knlist, kn, 0);
}

static int
filt_fsevent(struct knote *kn, long hint)
{

      kn->kn_fflags |= hint;
      return (kn->kn_fflags != 0);
}

static int
sysctl_vfs_ctl(SYSCTL_HANDLER_ARGS)
{
      struct vfsidctl vc;
      int error;
      struct mount *mp;

      error = SYSCTL_IN(req, &vc, sizeof(vc));
      if (error)
            return (error);
      if (vc.vc_vers != VFS_CTL_VERS1)
            return (EINVAL);
      mp = vfs_getvfs(&vc.vc_fsid);
      if (mp == NULL)
            return (ENOENT);
      /* ensure that a specific sysctl goes to the right filesystem. */
      if (strcmp(vc.vc_fstypename, "*") != 0 &&
          strcmp(vc.vc_fstypename, mp->mnt_vfc->vfc_name) != 0) {
            vfs_rel(mp);
            return (EINVAL);
      }
      VCTLTOREQ(&vc, req);
      error = VFS_SYSCTL(mp, vc.vc_op, req);
      vfs_rel(mp);
      return (error);
}

SYSCTL_PROC(_vfs, OID_AUTO, ctl, CTLFLAG_WR,
        NULL, 0, sysctl_vfs_ctl, "", "Sysctl by fsid");

/*
 * Function to initialize a va_filerev field sensibly.
 * XXX: Wouldn't a random number make a lot more sense ??
 */
u_quad_t
init_va_filerev(void)
{
      struct bintime bt;

      getbinuptime(&bt);
      return (((u_quad_t)bt.sec << 32LL) | (bt.frac >> 32LL));
}

static int  filt_vfsread(struct knote *kn, long hint);
static int  filt_vfswrite(struct knote *kn, long hint);
static int  filt_vfsvnode(struct knote *kn, long hint);
static void filt_vfsdetach(struct knote *kn);
static struct filterops vfsread_filtops =
      { 1, NULL, filt_vfsdetach, filt_vfsread };
static struct filterops vfswrite_filtops =
      { 1, NULL, filt_vfsdetach, filt_vfswrite };
static struct filterops vfsvnode_filtops =
      { 1, NULL, filt_vfsdetach, filt_vfsvnode };

static void
vfs_knllock(void *arg)
{
      struct vnode *vp = arg;

      vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, curthread);
}

static void
vfs_knlunlock(void *arg)
{
      struct vnode *vp = arg;

      VOP_UNLOCK(vp, 0, curthread);
}

static int
vfs_knllocked(void *arg)
{
      struct vnode *vp = arg;

      return (VOP_ISLOCKED(vp, curthread) == LK_EXCLUSIVE);
}

int
vfs_kqfilter(struct vop_kqfilter_args *ap)
{
      struct vnode *vp = ap->a_vp;
      struct knote *kn = ap->a_kn;
      struct knlist *knl; 

      switch (kn->kn_filter) {
      case EVFILT_READ:
            kn->kn_fop = &vfsread_filtops;
            break;
      case EVFILT_WRITE:
            kn->kn_fop = &vfswrite_filtops;
            break;
      case EVFILT_VNODE:
            kn->kn_fop = &vfsvnode_filtops;
            break;
      default:
            return (EINVAL);
      }

      kn->kn_hook = (caddr_t)vp;

      if (vp->v_pollinfo == NULL)
            v_addpollinfo(vp);
      if (vp->v_pollinfo == NULL)
            return (ENOMEM);
      knl = &vp->v_pollinfo->vpi_selinfo.si_note;
      knlist_add(knl, kn, 0);

      return (0);
}

/*
 * Detach knote from vnode
 */
static void
filt_vfsdetach(struct knote *kn)
{
      struct vnode *vp = (struct vnode *)kn->kn_hook;

      KASSERT(vp->v_pollinfo != NULL, ("Missing v_pollinfo"));
      knlist_remove(&vp->v_pollinfo->vpi_selinfo.si_note, kn, 0);
}

/*ARGSUSED*/
static int
filt_vfsread(struct knote *kn, long hint)
{
      struct vnode *vp = (struct vnode *)kn->kn_hook;
      struct vattr va;

      /*
       * filesystem is gone, so set the EOF flag and schedule
       * the knote for deletion.
       */
      if (hint == NOTE_REVOKE) {
            kn->kn_flags |= (EV_EOF | EV_ONESHOT);
            return (1);
      }

      if (VOP_GETATTR(vp, &va, curthread->td_ucred, curthread)) 
            return (0);

      kn->kn_data = va.va_size - kn->kn_fp->f_offset;
      return (kn->kn_data != 0);
}

/*ARGSUSED*/
static int
filt_vfswrite(struct knote *kn, long hint)
{
      /*
       * filesystem is gone, so set the EOF flag and schedule
       * the knote for deletion.
       */
      if (hint == NOTE_REVOKE)
            kn->kn_flags |= (EV_EOF | EV_ONESHOT);

      kn->kn_data = 0;
      return (1);
}

static int
filt_vfsvnode(struct knote *kn, long hint)
{
      if (kn->kn_sfflags & hint)
            kn->kn_fflags |= hint;
      if (hint == NOTE_REVOKE) {
            kn->kn_flags |= EV_EOF;
            return (1);
      }
      return (kn->kn_fflags != 0);
}

int
vfs_read_dirent(struct vop_readdir_args *ap, struct dirent *dp, off_t off)
{
      int error;

      if (dp->d_reclen > ap->a_uio->uio_resid)
            return (ENAMETOOLONG);
      error = uiomove(dp, dp->d_reclen, ap->a_uio);
      if (error) {
            if (ap->a_ncookies != NULL) {
                  if (ap->a_cookies != NULL)
                        free(ap->a_cookies, M_TEMP);
                  ap->a_cookies = NULL;
                  *ap->a_ncookies = 0;
            }
            return (error);
      }
      if (ap->a_ncookies == NULL)
            return (0);

      KASSERT(ap->a_cookies,
          ("NULL ap->a_cookies value with non-NULL ap->a_ncookies!"));

      *ap->a_cookies = realloc(*ap->a_cookies,
          (*ap->a_ncookies + 1) * sizeof(u_long), M_TEMP, M_WAITOK | M_ZERO);
      (*ap->a_cookies)[*ap->a_ncookies] = off;
      return (0);
}

/*
 * Mark for update the access time of the file if the filesystem
 * supports VA_MARK_ATIME.  This functionality is used by execve
 * and mmap, so we want to avoid the synchronous I/O implied by
 * directly setting va_atime for the sake of efficiency.
 */
void
vfs_mark_atime(struct vnode *vp, struct thread *td)
{
      struct vattr atimeattr;

      if ((vp->v_mount->mnt_flag & (MNT_NOATIME | MNT_RDONLY)) == 0) {
            VATTR_NULL(&atimeattr);
            atimeattr.va_vaflags |= VA_MARK_ATIME;
            (void)VOP_SETATTR(vp, &atimeattr, td->td_ucred, td);
      }
}

Generated by  Doxygen 1.6.0   Back to index